
XSpace: An Augmented Reality Toolkit for Enabling
Spatially-Aware Distributed Collaboration

JAYLIN HERSKOVITZ, University of Michigan, USA

YI FEI CHENG, Carnegie Mellon University, USA

ANHONG GUO, University of Michigan, USA

ALANSON P. SAMPLE, University of Michigan, USA

MICHAEL NEBELING, University of Michigan, USA

Authors’ addresses: Jaylin Herskovitz, University of Michigan, Ann Arbor, MI, USA, jayhersk@umich.edu; Yi Fei Cheng,
Carnegie Mellon University, Pittsburgh, PA, USA, yifeic2@andrew.cmu.edu; Anhong Guo, University of Michigan, Ann
Arbor, MI, USA, anhong@umich.edu; Alanson P. Sample, University of Michigan, Ann Arbor, MI, USA, apsample@umich.edu;
Michael Nebeling, University of Michigan, Ann Arbor, MI, USA, nebeling@umich.edu.

Augmented Reality (AR) has the potential to leverage environmental information to better facilitate distributed
collaboration, however, such applications are difcult to develop. We present XSpace, a toolkit for creating
spatially-aware AR applications for distributed collaboration. Based on a review of existing applications
and developer tools, we design XSpace to support three methods for creating shared virtual spaces, each
emphasizing a diferent aspect: shared objects, user perspectives, and environmental meshes. XSpace im-
plements these methods in a developer toolkit, and also provides a set of complimentary visual authoring
tools to allow developers to preview a variety of confgurations for a shared virtual space. We present fve
example applications to illustrate that XSpace can support the development of a rich set of collaborative AR
experiences that are difcult to produce with current solutions. Through XSpace, we discuss implications for
future application design, including user space customization and privacy and safety concerns when sharing
users’ environments.

CCS Concepts: • Human-centered computing → Interface design prototyping; Mixed / augmented
reality.

Additional Key Words and Phrases: Augmented reality, Distributed collaboration, Toolkit

ACM Reference Format:
Jaylin Herskovitz, Yi Fei Cheng, Anhong Guo, Alanson P. Sample, and Michael Nebeling. 2022. XSpace: An
Augmented Reality Toolkit for Enabling Spatially-Aware Distributed Collaboration. Proc. ACM Hum.-Comput.
Interact. 6, ISS, Article 568 (December 2022), 26 pages. https://doi.org/10.1145/3567721

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and the
full citation on the frst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specifc permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2573-0142/2022/12-ART568 $15.00
https://doi.org/10.1145/3567721

1 INTRODUCTION

Augmented reality (AR) can enable a wide range of collaborative applications by supporting inter-
action with physical environments and conversational grounding through shared virtual landmarks
[38, 48]. Prior research has described many benefts of shared environments for collaborative work,
including creating a persistent context for ongoing activity, enabling peripheral awareness of
others, facilitating chance encounters, and promoting usability via spatial metaphors [4]. AR has
the potential to extend these benefts to situations where collaborators are spatially distributed by

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022. 568

https://doi.org/10.1145/3567721
https://doi.org/10.1145/3567721
mailto:permissions@acm.org
mailto:nebeling@umich.edu
mailto:apsample@umich.edu
mailto:anhong@umich.edu
mailto:yifeic2@andrew.cmu.edu
mailto:jayhersk@umich.edu

568:2 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

XSpace Toolkit and Example ApplicationsMethods for Creating Shared Spaces

Object Anchors

Portals

World-in-
Miniature

Mesh
Overlay

Fig. 1. XSpace is a toolkit for creating spatially-aware AR applications for distributed collaboration. This
figure highlights some of the key components of our work. (Lef) Through a review of prior applications, we
identify three key methods for creating shared spaces in distributed AR applications. Object-centric methods,
expressed in XSpace using object anchors to place content; perspective-driven methods, expressed in XSpace
using both portals and a world-in-miniature view; and mesh-based methods, expressed in XSpace using a mesh
overlay. (Right) XSpace provides a Unity toolkit allowing developers to add support to existing applications
for distributed users.

sharing each user’s unique environmental context, which would help address key limitations of
traditional video conferencing systems.
While prior work has envisioned a number of innovative ways for users to share perspectives

[25, 62], environmental information [22, 46, 62], or even to merge two distinct environments [20, 59]
in both AR and virtual reality (VR), distributed multi-user AR applications remain difcult to create.
A variety of tools have been developed for quickly prototyping AR applications [17, 29, 33, 41, 42],
but toolkits that raise the ceiling of what developers can create, in particular, with a view towards
collaborative AR applications are limited [15, 56]. Recently, Microsoft introduced Mesh [37] to
provide a platform for distributed multi-user AR applications; however, their focus appears to be
on the prerequisite problem of sharing expressive avatars. In general, there is a lack of tools to help
developers explore and implement the rich and contextual variety of sharing scenarios that we see
in experimental systems.

In this paper, we contribute the design and development of XSpace, a toolkit for creating spatially-
aware AR applications for distributed collaboration, enabling a technical exploration of how diferent
types of collaborative AR applications can be constructed. We designed XSpace based on an analysis
of prior work and developer tools, which we distilled into three primary methods for constructing
a shared virtual space: object-centric, perspective-driven, and mesh-based. Each of these methods
centers the collaboration around a diferent spatial aspect used for coordination and alignment
of environments, and we demonstrate how they can be used in conjunction to enable a variety of
application scenarios.

XSpace implements these three key methods as a toolkit to simplify the use of diferent operations
for sharing information across space, provides utilities for environmental scanning and avatar
management, and exposes its functionality in Unity for easy integration into existing applications.
XSpace also provides complementary visual tools that allow designers to explore various confgu-
rations of shared spaces for their application without coding, allowing rapid prototyping of shared
AR experiences via direct manipulation.

We evaluate how XSpace can be used to support a variety of applications by implementing
promising application scenarios that are difcult to produce currently, as well as analyzing the
development efort required. Using XSpace, we create three multi-user distributed AR applications—
a co-working environment, a collaborative furniture layout design application, and a multiplayer

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:3

game—and demonstrate how the methods implemented in XSpace can be used and combined
to create a variety of collaboration modes. Per Ledo et al. [26], this is a Type 1 validation by
demonstration, a popular and accepted technique in 68 published toolkits papers. We also highlight
the developer efort required to create multi-user distributed AR applications using XSpace by
comparing the lines of code needed to create single- and multi-user versions of the same application.
We show that XSpace can cover a range of application types and use cases, demonstrating

fexibility and expressive power [45] for developers to explore new types of applications that were
not previously feasible. By combining known techniques like object anchors, portals, world-in-
miniature, and environmental mesh sharing, XSpace enables a variety of applications to be created
and customized to specifc needs, something that was not possible before without developer efort
to construct each case. We also demonstrate that XSpace can do this with only a small amount of
code added by developers.
Through XSpace, we identifed the components needed to create a variety of distributed AR

applications and how a developer toolkit could be constructed. As a result, we also generate
implications for future distributed collaborative application design, user space customization, and
mesh privacy that have not yet been considered. Overall, XSpace takes an important step toward
supporting richer distributed AR collaboration by leveraging users’ local environments to create
a shared spatial context, and raising the ceiling of AR tool support to inspire design of future
collaborative applications.

2 RELATED WORK

XSpace draws from prior research in the following areas: (i) mutual awareness in collaborative
work, (ii) collaboration in Extended Reality (XR), and (iii) XR prototyping and development tools.
In this section, we highlight key contributions from these and draw comparisons to our own work.
Later in Section 3, we further draw from prior work, applications, and tools to present a set of three
primary methods for creating shared AR spaces, which we use to design XSpace’s features.

2.1 Mutual Awareness
Building mutual awareness has long been recognised as a critical requirement of collaborative
virtual environments [12, 19, 52]. Gutwin and Greenberg defned this concept, which they termed
“workspace awareness,” as “the up-to-the minute knowledge a person holds about another’s inter-
action with the workspace” [19]. This understanding consists of four aspects: (1) who is involved,
(2) where they are working, (3) what they are doing, and (4) what their intended future actions are.

Prior research has explored a variety of techniques to support mutual awareness. The approach
of direct relevance to XSpace is creating shared spaces [3, 4, 44]. Commonly demonstrated benefts
of enabling multiple participating users, particularly in remote scenarios, to share spaces include:
(i) creating a persistent context for on-going activity [4], (ii) enabling peripheral as well as focused
attention of the activities of others [21], and (iii) facilitating serendipitous interactions [50].
These factors are common aims of collaborative XR applications; AR particularly has high

potential towards this end as users can interact with their physical environments to ground the
experience. However, designing and developing distributed AR applications that can maintain a
shared sense of space across varying user environments is difcult. Our intent with XSpace is to
address this difculty and explore the potential of XR technologies in enabling the construction of
richer shared environments.

2.2 Collaboration in XR

The prospect of using XR to support collaborative tasks has been discussed for two decades [4, 5, 53].
However, only recently has XR technology become sufciently mature to support the complex

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:4 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

Table 1. We draw on prior research to identify a set of methods for creating distributed AR/VR spaces for
collaboration, which we then support with XSpace.

Object Centric Perspective Driven Mesh Based

Shared Anchors Portals World-in-Miniature Crop and Overlay

Spatial [55], Mesh [37]
Room2Room [47]
Müller et al. [39]
Congdon et al. [11]

Photoportals [25]
Slice of Light [65]
MirageTable [6]
Loki [62]
Physical Telepresence
[27]

Remixed Reality [31]
Photoportals [25]
Loki [62]

Remixed Reality [31]
MirageTable [6]
Slice of Light [65]
Loki [62]
Holoportation [46]

Physical Telepresence
[27]

collaborative scenarios envisioned in the past [8, 32]. For example, Room2Room [47] enabled the
recreation of face-to-face conversations by projecting a life-size spatial capture of a remote user
into a local user’s space. XRDirector [40] enabled multiple designers to collaborate in AR/VR to
prototype 3D movie scenes and games. Blocks [18] leveraged modern mobile AR technology to
enable synchronous colocated creation of persistent block structures. Loki [62] facilitated remote
instruction with video, audio, and spatial capture, as well as MR presentation methods which allow
users to explore both the local and remote environments.

XR has proven to be particularly applicable in remote scenarios, where the bandwidth of commu-
nication is otherwise lowered between participating users [25]. Prior research has generally adopted
one of two approaches. One portion of prior research has proposed placing remote users in fully
immersive VR worlds. Sra et al. [58, 59], for instance, presented several techniques for generating
shared social virtual spaces procedurally. Alternatively, other systems have aimed to support remote
collaboration in AR applications. Prior work has achieved this by sharing expressive avatars that
can be placed in the physical space [46, 47], or by sharing portions of a user’s environment via
depth or video cameras, typically for the purposes of remote instruction [60, 62]. We focus on
enabling developers to share aspects of a user’s physical environment to construct shared contexts
for collaboration, and aim to combine techniques from both prior AR and VR systems to do so. As
previously noted, how users interact with their environment provides rich contextual information
about their needs and actions, thus, we focus on enabling portions of the environment to be shared.

2.3 XR Prototyping and Development Tools
There is now a vast landscape of available tools for XR prototyping and development, each with its
own intended function in the development pipeline, target users, technological basis, objectives, and
considerations [2]. A common objective of XR prototyping and development tools is to lower the
technical barrier to entry for creating XR experiences. Research tools like DART [33], ProtoAR [42],
360proto [41], and Pronto [29], for instance, facilitate the creation of low-fdelity XR prototypes
without the need for programming. Other commercial tools, such as Unity [61], Unreal Engine [16],
and A-Frame [1], and enabling technologies in research, like WorldKit [66] and the RoomAlive
toolkit [24], abstract away low-level technical details to make the development of higher-fdelity
applications easier. XSpace aims to ft into this second category.

Prior work has also developed tools to increase context-awareness and environmental sensing in
a variety of application areas. Projects such as KinectFusion [23] and DepthLab [13] have signif-
cantly lowered the barrier to gathering and accessing environment geometry data for application

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:5

developers in recent years. The Proximity Toolkit [34], for example, supplies developers with fne-
grained proxemic information between people, devices, and objects in the environment. Likewise,
Sousa et al.’s toolkit [54] eases prototyping with multiple commodity depth cameras which capture
user joint information. XSpace is similar to these tools in that it attempts to make environmental
information easier for developers to practically use. XSpace aims to enable developers to create
applications such as Sra et al.’s work [58, 59] which uses the environment geometry as a canvas
for generating shared virtual worlds, or like Holoportation [46] and Loki [62] which present AR
collaboration systems that leverage spatial capture to provide remote users with additional context
for their interactions.
Aditionally, other tools have focused on supporting the creation of multi-user, multi-device

experiences. Speicher et al.’s XD-AR [57] development framework, for instance, was designed
to unify input and output across a diverse set of AR displays. XRDirector [40] uses a role-based
approach to simulating XR scenes with multiple users. XRDirector also highlights important issues
around spatial coordination that can occur between AR and VR users, further motivating the need
for shared spatial context in collaboration.
XSpace bridges and extends the aforementioned streams of XR prototyping and development

research, a combination that to our knowledge is currently under-explored. XSpace is the frst
toolkit that focuses on allowing AR developers to more easily leverage spatial capture data as
contextual information in their applications to facilitate remote collaboration between users.

3 DESIGNING COLLABORATIVE SPACES

In this section, we present a set of three primary methods for creating shared AR spaces, distilled
from a review of prior work, commercial applications, and developer tools. For each method, we
describe relevant literature, motivating scenarios, and the interactions that each enable. We use
this review to motivate the design of XSpace. An overview is available in Table 1.

3.1 Object-Centric Methods

Living Room Conference Room

Fig. 2. Shared anchors scenario showing linked physical objects between a living room and a conference
room. One user works from their living room with a cofee table, couch, and television, and another user
works from a conference room with a table, chairs, and whiteboard. In AR, physical objects with similar
functions could then serve as anchors for the same virtual content: avatars sit on chairs/ couches, a shared
3D model is placed on each table, and meeting notes are posted on the television/ whiteboard.

One method for creating a shared AR space is to center physical objects as ‘anchors’ or reference
points for virtual content. Despite diferences in geometry, room layout, and type of furniture, the
physical objects in both environments have functional similarities that could be used to place and
group virtual objects together. This scenario is shown in Figure 2.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:6 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

This approach is used in two commercial AR applications Spatial [55] and Mesh [37], which
enable distributed collaboration around a single shared, usually fxed entity that is manually placed
by the user. For example, in Spatial, the user places a virtual ‘wall’ over a wall in their physical
environment, and virtual content and avatars are then placed relative to this anchor. Room2Room
[47] also presents a similar idea, where seating afordances in each space are pre-specifed, and
the angle of a user’s gaze is then redirected to account for slight diferences in room layout. Prior
research has also used physical landmarks as a way to re-map virtual reality spaces slightly to
be fexible to new physical environments. For example, Congdon et al. present a technique for
mapping two physical environments to each other based on key physical anchor points in order to
create a shared VR space [11].
We support this concept in XSpace by allowing multiple physical landmarks in each space to

serve as anchors for virtual content. For example, in Figure 2, the chairs, table, and wall are all
acting as linked reference points for content. These anchor points create a mapping between the
physical spaces. As in prior work, virtual objects could thus be placed relative to one or more
anchor points in the space. If a virtual object is placed between the table and wall in one space, it
should be placed between the table and wall in the other space, regardless of layout or distance.
This introduces further challenges relating to redirecting user’s gaze or movements continuously
when the layout of the two spaces difers, which we discuss further and address in Section 4.2.1.

3.2 Perspective-Driven Methods

Portals World-in-Miniature

Fig. 3. Portals and world-in-miniature scenarios. Portals: Users can see the other space and share content
through the portal, while keeping some content in their personal spaces. World-in-Miniature: Users can see
and manipulate content in the miniature display of the remote space.

Creating a shared AR space can also be done by giving users the ability to have a direct perspective
into another space. Portals are a popular way to do this. A variety of prior systems have used portal
implementations to share context. For example, Photoportals implemented a variety of 2D and
3D portals to serve as representations of users, objects, and places [25]. Though, compared to VR,
AR users cannot convincingly walk through a portal to be transported into another space, portals
can still be used in AR to share virtual content and view how another user interacts with their
environment, as shown in Figure 3. Portals also provide an opportunity for some AR content to
remain private to each user.

Another method draws on prior work which uses a birds-eye view of a remote space for guidance.
For example, Loki used a miniature live depth capture to display user context [62], and Staford et
al. used a miniature tabletop projection to guide users through a navigation task. [60]. Placing a
miniaturized version of one space inside another allows users to share virtual content by placing it
inside the miniaturized space, as shown in Figure 3. With only one space miniaturized, this is an
asymmetric form of collaboration, which may be better suited to some tasks. However, it could

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:7

also be made symmetric by providing each user with a miniaturized version of the other user’s
space. We used XSpace to explore these sharing modes individually and in combination.

3.3 Mesh-Based Methods

3

Space BSpace A Shared Meshes

Fig. 4. Mesh crop and overlay scenario showing the geometry of a desk and dining table being merged
together to create a shared tabletop extending the physical desk.

Finally, a shared AR space could be created by directly sharing scanned environmental meshes
between users. Scanned environmental meshes could be cropped to remove irrelevant context and
then overlaid onto another user’s space. This provides not only a shared coordinate plane for AR
content, but also a visible spatial context for the other user’s behavior. For example, one user’s
table could be overlaid onto another’s desk to create a shared workspace, allowing each user to
have context for the other’s actions, as shown in Figure 4. Holoportation [46] achieved this efect
by capturing one user’s environment with multiple depth cameras, and displaying relevant objects
to another user in AR.
Inspired by constructive solid geometry (CSG) operations used in many popular 3D modeling

tools, we imagine that a shared space created in this way could be visualized as the intersection of
two overlapped meshes. Additional operations could also be performed on the meshes before they
are overlaid, for example, meshes could be scaled up or down to match the scale of another space if
needed, as demonstrated by Sra et al. [59]. We experimented with these mesh-based operations for
creating shared environments in XSpace.

4 XSPACE

To support the methods for creating shared AR spaces that we identifed, we developed XSpace, a
toolkit for creating spatially-aware AR applications for distributed collaboration. XSpace provides
an infrastructure to turn single-user AR applications into ones that support distributed collab-
oration. It supports various compositions of the space alignment methods we presented earlier,
allowing designers or developers to test these confgurations using a set of complementary visual
tools. XSpace is open-source and available at https://github.com/HumanAILab/XSpace. We im-
plemented XSpace with the primary design goals of allowing for easy exploration of multiple space
confguration options, and minimizing developer efort when designing and developing distributed
AR applications. XSpace consists of three main components (Figure 5):

(1) XSpace’s developer toolkit allows developers to add shared space confgurations to existing
AR applications.

(2) XSpace’s server provides an architecture for multiple AR devices to share environmental
information.

(3) Visual design tools allow developers or designers to simulate space confgurations on real
or synthetic environmental meshes.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://github.com/HumanAILab/XSpace

568:8 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

AR/ Unity ApplicationAR/ Unity ApplicationAR/ Unity Application
XSpace Unity Toolkit

Avatar
Management and
Representation

Environmental
Asset

Management

Networking
Mngmt.

MRTK Spatial
Understanding

XSpace Server +
Database

XSpace Visual Design Tools

Space Configuration
Data

Object Data and
Transforms

Space Configuration Panel

Web Simulation Panel
Use configuration to

transform
coordinates

between spaces

Environment Scans

Shared 3D
Objects

Custom
Shared Data

Types

Default Object
Sharing

.obj

.obj

(x,y,z)

(x,y,z)

(x,y,z)

(x,y,z)

Custom data

.obj

.obj
.obj

Space offsets,
crop locations,

portal locations,
etc.

(x,y,z) Shared
object

position,
rotation,

scale

Shared
object

position,
rotation,

scale

Fig. 5. XSpace system overview. XSpace has three primary components: (1) a Unity toolkit which allows AR
applications to connect to this system as clients and provides common utilities; (2) a backend component
which stores the space configuration and manages object’s transformations. When a coordinate is accessed
from the database, the server uses the saved configuration data to translate the coordinate into a local form
suitable for each users physical environment; and (3) a web interface for configuring and simulating shared
AR spaces using the four operations identified in our design space.

In this section, we frst give a walkthrough of creating an XSpace-enabled application, then we
describe XSpace’s system architecture.

4.1 System Walkthrough

We base our system walkthrough in this section on the scenario of a group of developers who want
to create a distributed co-working environment in AR. The end goal is to create an environment
with a designated workspace for each user, and a designated ‘break room’ area for casual discussion.
In this way, a user can naturally walk up to a colleagues desk to ask a question, or look into the
‘break room’ to see if anyone is available to grab a cofee and chat.

Create AR application. XSpace provides an infrastructure for adding distributed multi-user
functionality to existing AR applications. In the case of this scenario, this may be a document
viewing and sharing application that can be enhanced with XSpace to allow for distributed users.
Developers frst create a single-user version of the application as usual. There is no need to add
external networking or avatar components. Developers should also make note of what AR content
should be shared between users later on.
Preview space confgurations. Next, in order to determine what confguration types they

would like their application to support, developers can use XSpace’s visual tools to preview a
variety of confgurations. XSpace provides example environmental meshes, or users can upload
their own models. As described in Section 4.4, developers can directly confgure a shared space by
manipulating and cropping meshes, placing portals and miniaturized spaces, and creating shared
anchors. In this scenario, the group plans to use two alignment methods. First, they will use the
‘align objects’ method to create a shared workspace for users. For example, the group may align
one user’s desk with another user’s dining room table, so that their avatar appears to be sitting
and working there, as in Figure 4. This can be achieved by drawing bounding boxes over the
corresponding mesh areas. Next, the group will use the ‘crop and overlay’ method to create a shared
‘break room’ area for casual discussion. This can be achieved by overlapping the meshes on the
shared area, and drawing its boundary.
Integrate XSpace with the application. We aim to make integrating XSpace components

as simple as possible. First, Unity developers will add XSpace’s main prefabs (the networking
manager, environmental asset manager, and avatar manager) to the root of their scene. Any space

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:9

confguration features (i.e., portals, cropped meshes) are managed by these central components.
Next, developers will add the sharing script component to any hologram that needs to be shared
between users. This script calls one of XSpace’s functions to update the other users if the hologram’s
transform changes. Developers can add their own parameters to send additional data between users.
Finally, developers can deploy XSpace’s server as provided for their application to connect to.
Fine-tune with visual authoring tools. On launch, the application will connect to the de-

ployed server, then begin scanning the user’s environment using MRTK’s Spatial Understanding
functionality [36]. Because this library aims to create a higher-fdelity and higher-quality scan than
the default HoloLens scan, users need to deliberately walk around their environment and gaze at
areas that they wish to include in the scan. Developers can then return to XSpace’s visual tools to
re-confgure the shared space with the real-world scan data. Once saved, data about the chosen
alignment (local origin ofsets, shared space boundaries, portal locations, etc.) is sent to each device
and used to mediate shared object transformations later. In this way, developers can quickly test
various space confgurations directly as their application runs.

4.2 XSpace Toolkit
XSpace’s Unity Toolkit provides an interface for developers to create multi-user applications that
make use of our mechanisms for creating shared spaces. The primary toolkit components are (1)
networking management, (2) environmental asset management, and (3) avatar representation and
management. Each of these components is implemented as a Unity prefab that can be used with
minimal confguration. The networking management component initializes a connection to the
shared database using the Unity3D-DDP-Client [7]. Next, the environmental asset management
component initializes the scanning process using Microsoft’s Mixed Reality Toolkit (MRTK) [36],
formats scanned meshes into the .OBJ fle format, and sends these fles to the server. When a
remote user joins the session, this component also imports that user’s space from the database,
reconstructs it into a mesh, and crops and displays the mesh according to the space confguration.
Finally, the avatar representation and management component handles the display of remote user’s
avatars. Though these components can largely be used-as is, parts can be swapped out as needed.
For example, a developer could choose to use a diferent avatar representation, which would only
require slight modifcations to XSpace’s components.
Additionally, XSpace provides a component for sharing arbitrary virtual objects among users.

This is provided as a script that can be attached to an existing GameObject or prefab in Unity. By
default, this script shares the object’s current transformation (position, rotation, and scale), along
with a string to represent the model or prefab name. When the script is instantiated on one device,
other devices can instantiate the same object and update its transformation accordingly. Developers
can also add additional properties or data types to the shared object as needed. For example, a
developer might want to share the current color of an object. We provide example functions for
doing so that can be easily modifed. While we specifcally target the HoloLens with our toolkit,
XSpace could be extended to support other devices with scanning capabilities, like mobile phones.

XSpace supports the shared space confguration methods that we identifed in our earlier review.
We describe the implementation of each below.

4.2.1 Shared Anchors. To calculate the position of virtual content relative to the shared anchors,
we defne the following mapping, motivated by the idea that users’ relative position and orientation
to the anchor in their local environment should be preserved in the remote environment. For one
anchor pair, we use the following afne transformation to obtain remote positions and rotations of
avatars and objects: � = � −1�� , where �� is the world matrix of the anchor in the current space,

�
and �� is the world matrix of the anchor in the remote space.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:10 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

For two anchor pairs, we also aim to preserve the relative movement between the anchors. For
example, if a person walks from one anchor to another in their own space, they should also appear
to do so in the remote space. To achieve this, we let the vector between the anchors act as the
world forward vector of the coordinate space, and reorient all positions accordingly. This vector’s
magnitude is also used to defne a scaling factor between the two spaces.
When three or more anchor pairs are defned, we only consider the three anchors closest to

the object we would like to position. We can then consider the three anchor points as creating a
barycentric coordinate system. To translate an object’s orientation, we frst calculate directional
vectors between the center of the anchor formed triangle and each of the anchors. Given the user’s
gaze vector, we calculate which directional vector is closest. Finally, we apply a rotational matrix
representing a quaternion required to rotate the closest directional vector to the corresponding
directional vector in the remote world to determine the remote gaze vector. More information
about these calculations is provided in Appendix B.

4.2.2 Portals. To implement each portal’s view, we place a virtual camera in the scene that mimics
the viewpoint of the local user. The view from this camera is saved to a bufer, and then used to
projectively texture the plane representing the portal from the user’s point of view using custom
vertex and fragment shaders. We can calculate the position and the rotation of the remote camera
with the following afne transformation: 1 � −

�� �� = � �
�� − 180��� . We determine when virtual

objects should be passed between remote spaces by performing a portal-line intersection check
with a line defned between the virtual object’s current position and position in the previous frame.
The same mapping defned for calculating the position and orientation of the remote camera can
be used to determine the new position of virtual objects passed to a remote world.

4.2.3 World-In-Miniature. This efect is achieved using the object hierarchy system that scenes in
Unity are organized by. Each avatar is added as a child object of their respective environmental
mesh, while the miniature space is added as a child object of the larger space. Each avatar will thus
be positioned and scaled relative to their space.

4.2.4 Mesh Crop and Overlay. The placement of the virtual avatars and objects between the two
spaces are defned with an afne transformation calculated using the relative translation, rotation,
and scaling between the two remote rooms in the confguration interface. Specifcally, the mapping
from room A to room B is defned as ��� = �−1�−1� −1������, where ��, ��, �� and �� , �� , �� � �
defne

�

 the rotation, translation, and scale of rooms A and B respectively. As an example, to obtain
the position of a virtual object in room B in room A’s local coordinates, the following calculation is
performed: �� = ����� .
Additionally, meshes can be cropped so that only relevant portions are included, or be sliced

to produce two separate shared areas. Separate intersection or union operations can then be
performed on individual slices. If this method is used, we calculate the position of remote avatars
by frst determining which slice the user is on. We then use a similar method as described above,
substituting the transformation of the relevant mesh portion.

4.3 XSpace Server and Database API
In order for multiple users to connect to a collaborative session, XSpace includes a networking
infrastructure that mediates object positions across various coordinate spaces. This is implemented
as a MongoDB database, which is accessed using an API following Meteor’s Distributed Data
Protocol. For example, when one AR user moves to a new location in their environment, their local
position is sent to the server. When the server receives this change, it uses information about how
the shared space has been confgured to translate this into a global coordinate. This change is then

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:11

A: Shared Anchors B: Portals C: World-in-Miniature D: Crop and Overlay

C
on

fig
ur

at
io

n
S

im
ul

at
io

n

Fig. 6. An overview of XSpace’s companion visual design tools. For each operation, we show how it is created
in the configuration panel, and the result in the simulation panel. (A) Shared Anchors allows developers to
designate physical objects in each space as an anchor for virtual content by drawing a bounding box around
the object. (B) Portals can be placed in each space using transform controllers, and then act as a window
into the other space. (C) World-in-Miniature allows users to place a miniature version of one space within
another, and share virtual content by dropping it into the miniature space. (D) Mesh Crop and Overlay allow
users to share portions of their environmental meshes to create a unified environment.

pushed to all other users in the global form, which each user translates to a location in their own
environment. The server calculates the coordinate translation between environments according to
the implementation in Section 4.2.

4.4 Visual Design Tools
XSpace provides a set of visual design tools in the form of a 3D web interface. This interface
consists of a confguration panel, where alignment methods can be applied to scanned or synthetic
environmental meshes by directly editing a 3D scene, and a simulation panel, where a frst-person AR
view of the resulting space is simulated in the browser. An overview is shown in Figure 6. Scanned
environmental meshes are initially loaded into a scene in the confguration panel. Developers
or designers can then modify the confguration by manipulating the meshes. This is done via
traditional transform controls (to align meshes, place portals, and place miniature versions of the
meshes), as well as simple click-and-drag controls (for slicing meshes and defning bounding boxes).
The simulation panel is then used to visualize the result of a confguration from a frst-person view.
This has multiple uses. For example, a developer may use it to test their application with multiple
synthetic meshes that can be imported into the scene. It can also allow web or VR users to join a
collaborative session with AR users to test various confgurations. This interface is implemented
using Three.js [63] and Meteor [35].

4.4.1 Shared Anchors. To confgure a space using shared anchors, users click and drag within the
confguration panel to create bounding boxes around two corresponding objects within each mesh.
A visualization of the bounding boxes is shown in Figure 6. After selecting these corresponding
objects to act as a shared anchor for virtual content, an additional panel will then appear allowing
users to set a local ‘forward’ vector for each object. This is included because some objects have
an obvious ‘front’, i.e., a chair or a desk, so specifying this allows content to be placed relative
to a specifc part of the object. Upon confrming the orientation alignment, the objects will be
highlighted as feedback indicating an object-pair has been defned.
We also implemented a second mechanism for creating a shared anchor which allows users to

copy a physical object from one space to another in the case where there is not a relevant object in

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://Three.js

568:12 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

each space. The interface is similar to the above, except the user only specifes a bounding box for
one object. That portion of the mesh is then copied into the second mesh, and the user can use
transform controls to adjust its position. The object and its copy then act as a shared anchor for
virtual content, and the recipient of the copy will see the selected portion of the mesh overlaid onto
their physical environment.

4.4.2 Portals. Users can add pairs of portals to the confguration scene via a toolbar. Portals can
then be positioned, oriented, and scaled in each space using a transform controller. This is shown
in Figure 6. When portal placements are confrmed, they will appear in the simulation interface
and display a view of the remote space.

4.4.3 World-In-Miniature. To confgure a world-in-miniature view, users can add a scaled-down
copy of a mesh into the confguration scene. This will initially be placed into the center of the other
mesh in the scene, and can be edited with a transform controller. From the larger space’s view,
the miniature space will appear with a small avatar inside. Virtual objects can be passed between
the two spaces by intersecting them with the ‘ceiling’ of the miniature room, and will be scaled
automatically to match the space they are contained within.

4.4.4 Mesh Crop and Overlay. Users can also crop and overlay meshes onto each other using
CSG-inspired operations. In the confguration panel, environmental meshes can be positioned,
oriented, and scaled using a transform controller. When the spaces are overlapped to produce an
intersecting region, the user can then defne the overlapping region as an intersection or union
using a bounding box. If designated an intersection, the scanned room geometry of both rooms
will be merged and shared within the bounded overlapping space. If designated a union, the the
entire merged meshes will be shared between users, even past the bounding box.

5 EXAMPLE APPLICATIONS

Table 2. Example application scenario descriptions. (*indicates the application was considered conceptually
but not implemented)

Scenario Method Description

Multiplayer game
(Entertainment)

Crop and Overlay A multiplayer snowball throwing game to high-
light the use of shared environments to enrich
collaborative game-play.

Collaborative
furniture layout
(Personal)

World-in-Miniature Collaboratively design furniture layout from both
a birds-eye and frst person view of a space.

Shared work space
(Professional)

Shared Anchors An AR-enhanced co-working space, replicates an
ofce space in the home

Remote user study plat-
form*
(conceptual)

World-in-Miniature,
Portals (proposed)

An experiment platform for study administrators
to observe remote users interacting with their
environment.

Confgurable remote class-
room*
(conceptual)

Crop and Overlay
(proposed)

A teaching environment that enables instructors
to create breakout rooms from scanned spaces.

In order to evaluate XSpace’s coverage and fexibility, we select three common single-user XR
applications to extend with XSpace to support multiple distributed users (see Table 2). Demon-
stration by example is a standard toolkit evaluation technique as discussed by Ledo et al. [26]. We

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:13

consider this the most important type of evaluation for XSpace. A study with developers could be
performed in the future to understand how XSpace would be utilized in the application development
process but to us this is a secondary concern. With the scenarios in Table 2, we aim to illustrate
the utility and versatility of XSpace. Specifcally, we hope to highlight the diverse use cases of
our space confguration techniques. Each application implements a diferent method identifed
from our review. In the following, for each of our example applications, we describe our current
implementation and highlight potential future additions. Finally, we also highlight the developer
efort needed to construct one application using XSpace by comparing the lines of code needed to
create single- and multi-user versions of the same application.

5.1 Snowball Throw (Multiplayer Game)

Web Simulation HoloLens View

Fig. 7. Snowball Throw’s AR application using the intersection operation. Lef: Snowball Throw’s web applica-
tion simulating AR by visualizing the user’s spatial mesh in a web interface. Using the intersection operation,
each user can see the other’s space overlaid onto their own. Right: Snowball Throw’s HoloLens application
developed with XSpace’s Unity toolkit. The yellow mesh shows the remote user’s couch which has been

3

merged with the local space. Remote users can then move behind the couch to dodge.

Fig. 8. A snippet of code highlighting how XSpace’s functionality was integrated into SnowballThrow. On the
lef, when a snowball is thrown by the local user, an additional function is called to send its position and
direction to XSpace’s server. On the right, when a snowball is thrown by a remote user, XSpace’s utilities are
used to convert its position and direction to vectors in the local coordinate space, based on the current space
configuration. Full sample code is provided in Appendix A.

In Snowball Throw, we explore how shared spatial contexts can change and enhance embodied
game-play experiences. This example was modeled after typical multiplayer games: players can
throw snowballs at other player’s avatars which break apart on impact. We implemented this XSpace
application using the mesh crop and overlay method, meaning parts of a remote player’s mesh are
overlaid on top of another user’s physical environment. We designed the snowball projectiles to
interact with both the player’s local environment and the virtually overlaid remote environment.
After the local and remote spaces are confgured using XSpace’s visual authoring tools, the player’s
environment becomes a tactile game environment. They can dodge their enemy’s snowballs by
hiding behind the physical furniture and walls in their room. They can additionally leverage the
shared virtual furniture and walls as coverage.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:14 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

As XSpace enables the shared environment to be reconfgured as needed, the same physical
environment can be adapted into a range of game-worlds through intersections with diferent
remote spaces. Even with just two spatial meshes, by applying transformations (e.g., scaling one
space) of diferent sorts, we can generate a vast array of diferent gameplay experiences.
We implemented Snowball Throw both on the HoloLens using XSpace’s Unity Toolkit, and as

a 3D web application. The general development process outlined in Section 4.1 was followed to
implement the HoloLens application. For this application, we added one custom shared data type
into the system to represent the snowball throwing functionality. When a snowball is thrown, we
share its initial position and throwing direction. Its trajectory is then calculated using the physics
engine on each device (see Figure 8 for an overview). Adding this functionality required modifying
around 20 lines of code, compared to the 125 lines required to develop the single-user version of
Snowball Throw. More information about this implementation is provided in Appendix A.

Though we implemented Snowball Throw using the mesh crop and overlay method, other designs
could also lead to diferent and creative game-play. For example, using multiple portals to link
spaces and throw snowballs through would create a much more challenging game.

5.2 Room Design (Collaborative Furniture Layout)

Chair Scaled to Larger Space Chair Scaled to Dollhouse

Fig. 9. Room Design’s web implementation simulating AR by visualizing the user’s spatial mesh, using the
world-in-miniature operation. Lef: a user moving a chair into the miniature space. Right: the scale of the
chair is automatically adjusted when it enters the miniature space.

In Room Design, we explore the use of XSpace to support multi-scale and multi-perspective
interactions, specifcally in the context of furniture layout design. In the application we implemented,
users can each place various furniture items in their space, and edit their positions by clicking and

1

dragging. We enable users to interact via XSpace’s world-in-miniature operation. We place the
environment of one user as a miniature model on top of a table in the room of the other, allowing
for a top-down view of the furniture and room layout. When the user passes an object into the
miniature space, the scale of the object is immediately adjusted so that it appears small. However, for
the user inside of the miniature space, the object appears at room scale. This enables collaborating
users to collectively have both a local- and global-level perspective of their design, which Ibayashi
et al. [22] has highlighted previously as highly benefcial. Room Design was implemented as a 3D
web simulation of AR using a three.js [63] version of XSpace’s toolkit. This was done as a separate
webpage that interfaces with XSpace’s API in the same way a Unity application would. Previously
scanned environmental meshes from a HoloLens were saved and used as example meshes for this
demonstration. This application can also pair well with the portal operation. With both of these

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://three.js

XSpace: Spatially-Aware Distributed Collaboration 568:15

techniques, users could have both a top-down view and frst-person window view into the other
persons space, which has benefts to this task.

5.3 Ofice Space (Shared Work Space)

Space BSpace A

Copied DeskDesk 1

Desk 2 Dining
Table

Fig. 10. Ofice Space’s web implementation simulating AR by visualizing the user’s spatial mesh, using the
shared anchors operations. Here, there are two pairs of shared anchors: One desk linked to a dining table,
and another desk copied to a remote space. The resulting avatar locations in each space is shown here. Each
user is at their own physical desk, but their avatar is thus placed contextually in the other’s space.

In Ofce Space, we demonstrate how XSpace can be used to share spatial contexts in order to
facilitate serendipitous interactions that can arise out of being co-present with others in a physical

2

environment. We explore this idea in the context of remote work. One aspect of being in a physical
ofce space that is difcult to replicate with current video conferencing tools is the ability to glance
at a co-worker to see if they are busy, and walk up to chat with them when an opportunity arises.
We enable this experience in our Ofce Space application.

Ofce Space leverages XSpace’s shared anchors operation in our current implementation. In
the example we present in Figure 10, we paired one user’s desk with another user’s dining table.
As a result, both users appear working contextually within each other’s environments. Within
the application, users can also share virtual objects as ‘status indicators’ of their work progress.
For example, users can hold a cofee mug to signify that they are taking a break and open to
conversation. Ofce Space was implemented as a 3D web simulation of AR using a three.js [63]
version of XSpace’s toolkit, using the same method as our Room Design application.

Though we implemented Ofce Space with the shared anchors method, this can also pair well
with the mesh crop and overlay method. With this technique, portions of each user’s space could be
separated and designated as a ‘break room’ or ‘conference room’ while still maintaining the general
ofce space. This opens a future opportunity to consider the materials of shared space boundaries.
While we implement boundaries as a translucent border around a space, this could be varied in the
future by privacy needs. For example, the ‘conference room’ space could have a completely opaque,
sound-insulated barrier, while the ‘break room’ space could have a semi-opaque barrier.

5.4 Further Examples
In addition to the implemented applications above and their potential extensions, we also present
two additional conceptual use cases that could beneft from shared space creation.

First, XSpace can be used to create applications for performing remote user studies that require
observing a user interacting with the environment. The world-in-miniature operation could be
used for a top-down perspective, while multiple portals act as windows into various locations in
the user’s space. In this application however, the study administrator may not want to be visible
to the participant, necessitating the use of a one-way portal. Though we did not implement this,
XSpace could easily be extended to support various types of sharing. To use the metaphor of a

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://three.js

568:16 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

physical window, the boundary between spaces could act as a completely transparent window, a
one-way mirror, frosted or translucent glass, or as an opaque wall. All of these options may be
useful in diferent settings, and in the future allowing users to customize this on the fy would add
an important additional layer of control over collaborative spaces.
XSpace could also be used to create remote teaching applications. For example, the mesh crop

and overlay method, which allows one space to be cropped into multiple shared areas, could be
used to create multiple breakout rooms for students to work on a task together. These rooms could
be reconfgured as needed to shufe student groups. An instructor would then be able to walk
around between ‘rooms’ in their space as normal to monitor students. This could be joined with
similar techniques presented in Loki [62] and Slice of Light [65] to create powerful and contextual
teaching environments.

6 DISCUSSION

6.1 Technical Reflection

Developing distributed, multi-user AR applications is a complex task requiring a signifcant amount
of developer efort and many iterations. We aim to begin to address this with XSpace, demonstrating
that multiple methods for creating distributed, shared AR spaces can be integrated into one toolkit.
XSpace allows developers to add shared space confgurations to existing AR applications, and
simulate confgurations through a set of visual design tools. Here, we frst thematically analyze
XSpace using Olsen’s framework [45], then we discuss limitations and future work.

6.1.1 Problem Not Previously Solved. Prior work has envisioned a number of innovative ways
to create distributed shared spaces [46, 58, 59, 62]. XSpace brings these methods together into a
single toolkit, enabling a technical exploration of how diferent types of applications could be
constructed. Additionally, while a number of AR prototyping tools and development toolkits exist
[13, 23, 29, 33, 40–42, 54, 56], tool support for creating collaborative AR applications has previously
been limited to specifc scenarios and collaborative settings like meeting rooms, which is only one
of the possible confgurations covered by XSpace’s design space, as discussed in Section 3.

6.1.2 Generality. We presented fve example applications to illustrate the versatility and generality
of XSpace, and its methods for creating shared spaces. Additionally, XSpace has been designed
based of of a wide range of existing AR applications, which it aims to support. One limitation of
XSpace is that it centers around specifying shared spaces based on real or synthetic environmental
meshes. Future work should investigate how shared spaces can be specifed based on parameterized
environments to support more dynamic collaborative settings. This could be similar to how Unity
MARS works for single-user AR applications: developers can prototype an application by placing
elements relative to a synthetic environmental mesh, which is then parameterized by its surfaces,
walls, and other objects so that the AR experience can be generalized to other spaces [64]. Developing
such adaptive AR systems that can extend to arbitrary combinations of diverse spaces has been the
subject of ongoing research [9, 30] and future research could investigate how to best incorporate
such techniques into a collaborative system like XSpace.

6.1.3 Reduce Solution Viscocity. Because XSpace as a toolkit was specifcally designed to support
customization of AR applications to enable diferent modes of collaboration, it is likely less efort
than the current developer solution of implementing each space confguration manually. XSpace’s
current strength in this area is in its fexibility [45], meaning the ability to make rapid design changes,
as showcased in its visual design tools for quickly confguring collaborative spaces. However, as
XSpace’s visual design tools primarily use a single rendered 3D view with a click-and-drag interface
to confgure a shared space, this could be refned in the future, perhaps through additional views and

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:17

snapping tools such as those demonstrated in SnapToReality [43], which would increase XSpace’s
expressive match, the expression of design choices in a toolkit per Olsen [45]. XSpace provides a
useful foundation for future research in this direction.

6.1.4 Empowering New Design Participants. We aimed to develop XSpace’s visual controls so that
they would be familiar to those already working in 3D design. XSpace uses a mix of three-axis
transform controls (as found in common 3D modeling software), as well as some custom drag-
and-drop controls for creating bounding boxes or slices in environmental meshes. However, the
user experience could further be improved so that it is more efcient and approachable to a wider
range of backgrounds. Although XSpace lowers the threshold for developing complex distributed
AR applications which typically require a high degree of skill to create, XSpace still requires its
users to have a knowledge of Unity development, which is specialized. XSpace’s visual design tools
could be integrated with aspects of other AR prototyping and design tools to allow non-technical
designers to create distributed AR applications. For example, Pronto [29] or ProtoAR’s [42] rapid
prototyping approaches could be leveraged for quickly adding AR content into XSpace without
code. Code-free methods for specifying the behavior of objects in shared spaces has been the focus
of systems like XRDirector [40] and Rapido [28], and future work could investigate how to best
enable visual authoring of dynamic objects to form an integral part of the collaboration where
Blocks [18] provides a starting point.

6.1.5 Power in Combination. XSpace demonstrates that multiple methods for creating distributed,
shared AR spaces can be integrated into one toolkit. We frst distill a set of key methods from prior
work. Then, in our example applications, we present how these methods can support common AR
collaboration scenarios.

The methods we implement in XSpace can be used independently which is sufcient to recreate
some prior collaborative applications, but are more powerful in combination and able to support
more complex, new scenarios. For example, while in Room Design we currently use one world-in-
miniature model to allow someone to have a top-down view into another environment, this could
be combined with other methods. A mesh overlay could be added in part of the space so that users
could walk around the newly-designed space frst hand, tweaking furniture placement on a more
precise scale.

Given that XSpace allows users to modify the construction of a virtual environment, it is possible
for spaces to be created that are not entirely functional. Some of these spaces may be unnatural,
hard to understand, or redundant, but ultimately still usable. For example, if a portal is placed inside
an area where two meshes have been overlaid with each other, the portal will essentially look in
on itself. This does not cause technical issues, but it potentially does not function in the manner
intended by the user. Another example of this can occur when cropping a mesh into multiple pieces
and creating multiple overlays with another space. If the user moves from one slice to another, to
the remote user, they may appear to teleport across the room. Furthermore, if spaces are slightly
misaligned, then a person’s avatar could appear to be walking through furniture or walls in another
user’s space, potentially causing disorientation and breaking the illusion of presence.

Other combinations may yield non-functional spaces. For example, a mesh could be cropped into
two parts, then overlapped with itself, causing a person to essentially be at two coordinates at once.
Another example of this type of issue can occur when remapping some coordinate spaces using
the shared anchors operation. If three objects in a triangle in one space are mapped to three objects
in a line in another space, this results in a confict. XSpace enabled these explorations of creating
shared virtual space, and adding checks on the meshes and extending our visual tools would allow
us to detect potential issues and guide users to mitigate them.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:18 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

6.1.6 Can It Scale Up? While methods like the portals, world-in-miniature, or shared anchors
operations scale well to groups of users (we successfully tested with up to 5), mesh-based operations
may become increasingly difcult to interpret if more than two users’ environmental meshes are
layered on top of each other. One direction for future work would be to study user’s perceptions of
such spaces. It is possible that diferences in spatial reasoning or understanding between users may
cause coordination issues or confusion in these cases. Additional collaboration tools may mitigate
such issues. For example, gaze indicators or shared annotations [56, 62] have previously been used
in social VR situations to assist with coordination and perception

6.2 Limitations
XSpace aims to integrate a variety of methods for creating shared spaces into one toolkit. Aside from
the opportunities for future work expanding XSpace’s functionality previously mentioned in the
following section, we recognize that there are limitations to our work. While we evaluate XSpace’s
expressivity and coverage of previously built applications in this work, and highlighted how XSpace
could reduce developer efort through analyzing lines of code, we have not yet evaluated how
XSpace may be used efciently in design and development practice. Namely, XSpace’s current
visual authoring tools for designing and simulating various space confgurations could be refned
further, as mentioned previously in this section. Additionally, our approach in general of using
a web-based set of visual design tools to confgure and preview spaces could be expanded in the
future to support other methods of doing so, for example, allowing designers to confgure shared
3D spaces directly in AR or VR.

7 FUTURE WORK

In this section, we discuss considerations for using XSpace in practice relating to the development
workfow, end user experience, and user privacy, as well as ways of extending XSpace in the future.

7.1 Automation vs. End-User Customization

Shared Anchors Portals

World-in-Miniature Crop and Overlay

A B C D

Fig. 11. Future XSpace end-user workflow concept. (A) A group of remote users, each with their own device,
opens an AR application that was made with XSpace. (B) Each user’s device scans the environment. Afer
processing on device, the scans are then sent to a shared server. (C) XSpace’s web interface imports scans
from the server once they are available. Users can visit the web configuration UI to choose how various
alignment primitives will be applied to their spaces. Once finalized, relevant alignment data (i.e., local origin
ofsets, space boundaries, portal locations, etc.) is sent to the server. (D) Finally, users can start using the
intended AR application.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:19

One important direction for future work is in exploring how the shared space confguration
process in XSpace can be made available to end users. Currently, XSpace allows developers to
customize shared spaces for their needs. We developed a manual creation method to fully explore
possible confgurations and potentially invalid alignments. One potential method would be to
repurpose XSpace’s visual design tools directly as an interface for end-user customization. This has
the beneft of allowing users a fne-grained level of control over their collaborative spaces and what
they want to share, with still benefting from developer recommendations and having the ability to
adjust those to their exact scenarios and needs. This future workfow is shown in Figure 11.

From a user experience perspective, a completely automated system or semi-automated system
which takes user’s scanned meshes as input and provides multiple potential spatial confgurations as
output could be benefcial. Prior work has explored re-mapping VR spaces to ft various physical en-
vironments [30], and similar techniques could potentially be applied to partially automate XSpace’s
shared anchor and intersection techniques. However, we suspect that the optimal confguration for
a shared space will vary widely depending on the application and task at hand, so providing users
or developers some level of control is crucial.
A related topic is exploring how shared spaces can be reconfgured on-the-fy. One potential

method could leverage the semantics of physical objects in the space for direct manipulation of
the shared space afordances (e.g., doors, lights, curtains, furniture arrangements). For instance,
whether or not a room is shared could be linked to the state of the room’s door. An open door could
indicate the user is open to peers accessing their space remotely, while a closed door indicates
the opposite. We could leverage similar environment state detection mechanisms as in SpaceState
[14] to achieve this. With XSpace, we can furthermore base decisions regarding how the shared
space should be constructed on the collective state of linked environments. For instance, instead of
basing whether a space should be shared based on the state of one user’s door, we could require
both users to have their doors open before any sharing occurs.

7.2 Privacy and Safety

XSpace shares a scanned mesh of a users space with their collaborators. Though this mesh is
untextured in our implementation, this is still revealing and can present a concern for users. Certain
spaces in the home are considered private (e.g., a bedroom), and even for those that are more public
like a living room, people may not wish to share this information [49]. At a coarse level, XSpace’s
Unity toolkit does not use previously scanned meshes of a space, and instead creates a new scan
each time, allowing users to manually keep areas of their home out of the scan by not pointing the
camera to those places. This could be expanded in the future to allow users to edit the scanned
mesh on device before sharing it, for example, through cropping operations or allowing the user to
‘blur’ certain areas to make them lower fdelity.

In many cases, the extent to which various aspects of a collaboration or multi-user environment
need to be private may difer. For instance, in a teaching setting, the instructor may at times need
to have one-on-one conversation with a student. Similarly, while a user may generally be open
to having their peers enter their living-room environment, they may have select documents in
the room they would prefer to be confdential. Ruth et al.’s threat model for secure multi-user AR
applications [51] can provide a starting point for future work to explore methods of providing
users with more fne-grained control over the mesh sharing procedure. Similar to Ruth et al.’s
ghosting mechanism where it was applied to hide sensitive documents from remote viewers, one
approach we envision is to enable developers or users to control the materiality of their shared
mesh (e.g., setting parts of the scanned space as fully transparent, semi-transparent, shared one
way, or fully opaque). For instance, a user may prefer to set more private regions of their space as
fully transparent so that it would not be visible, or block sharing of that area altogether.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:20 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

7.3 XSpace as a Future Research Platform

Finally, we believe that XSpace can be a useful platform for researching distributed AR collaboration.
There is a large amount of CSCW work that can be re-evaluated in this setting. For example, how
is workspace awareness best facilitated? How do the various operations presented in this work
afect collaboration and communication? How can we integrate existing theories from collaborative
work into XSpace to make it more efective? Moreover, XSpace currently focuses on expanding the
notion of ‘space’ in synchronous distributed collaboration, where there may be a higher motivation
for increasing co-presence between users. However, asynchronous collaboration is also an inter-
esting area for future work. MAVRC [10] explored the challenges and design considerations for
multimodal asynchronous collaboration in VR. Blocks [18] presented techniques for asynchronous
AR collaboration. XRDirector [40] studied collaborative design tasks with some users in VR and
others in AR. These techniques could be adapted and combined with our techniques in XSpace for
creating shared virtual spaces, perhaps in the form of a visualization in a shared virtual space to
show the temporal dimension of recent changes. Similar to Loki [62], XSpace could be extended
with functionality to support users in pre-recording interactions with their environment to be
played remotely. We can envision pre-recordings acting as a contextually situated reminder for the
local user. They could also potentially serve as space-specifc instructions. We believe the fexibility
of our approach facilitates rapid construction of shared environments for study purposes.

8 CONCLUSION

In this paper, we have presented XSpace, a toolkit for creating spatially-aware AR applications for
distributed collaboration. XSpace supports a variety of methods for creating shared spaces, which
we developed through a review of prior work. We also presented a set of example applications to
illustrate how XSpace can enhance promising AR application scenarios. Overall, we demonstrate the
potential of further involving environmental context in distributed AR collaboration. We identify
important challenges for future work, including improving privacy techniques, automating shared
space creation, and studying collaborative behaviors in this space. Overall, XSpace is an important
step towards creating more immersive and efective distributed collaborative AR experiences by
making it easier to leverage users’ local environments.

ACKNOWLEDGMENTS

We thank our reviewers for their time and feedback. This material is based upon work supported
by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1841052.
Any opinion, fndings, and conclusions or recommendations expressed in this material are those of
the authors(s) and do not necessarily refect the views of the National Science Foundation.

A CODE SAMPLE

Here we provide more information about how XSpace was used to implement Snowball Throw,
the demo application described in Section 5.1. Two primary components are modifed: one for
when a snowball is thrown locally and is sent to XSpace’s server, and one for when a snowball is
thrown by a remote user. Comments have been added to indicate which code has been written by
the developer, and which code is provided by XSpace.

First, when a snowball is thrown locally, an additional function is called to send it’s position and
direction to XSpace’s server. The developer only needs to add this function to their existing code
(see Figure 12).

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:21

private void ThrowSnowball() {
 Transform cameraTransform = CameraCache.Main.transform;

 // Developer: Make a new object that is 1m away in direction of gaze
 var direction = cameraTransform.forward;
 var origin = cameraTransform.position;
 var position = origin + direction * 1.0f;

 // XSpace: Send snowball to server
 XSpace.SendSnowball(position, direction);

 // Developer: Create local snowball instance
 GameObject snowballInstance = Instantiate(snowballPrefab, position,

 Quaternion.identity);
 Vector3 throwDirection = new Vector3(direction.x, direction.y + 0.3f,

 direction.z);
 snowballInstance.GetComponent<Rigidbody>().AddForce(throwDirection * 400);

 // Developer: Destroy snowball instance
 Destroy(snowballInstance, 20);
}

Fig. 12. When a snowball is thrown locally, an additional function is called to send it’s position and direction
to XSpace’s server.

This ‘SendSnowball’ function frst formats the data, then pushes it into a database called ’projec-
tiles’. This code was provided by XSpace, and modifed by the developer to include the ’directionArr’
property (see Figure 13).

public void SendSnowball(Vector3 pos, Vector3 dir) {
 // XSpace: Format data
 JSONObject positionArr = JSONObject.Create(JSONObject.Type.ARRAY);
 positionArr.Add(-pos.x);
 positionArr.Add(pos.y);
 positionArr.Add(pos.z);

 // Developer: Add custom property
 JSONObject directionArr = JSONObject.Create(JSONObject.Type.ARRAY);
 directionArr.Add(-dir.x);
 directionArr.Add(dir.y);
 directionArr.Add(dir.z);

 // XSpace: Add snowball to database
 MethodCall methodCall = ddpConnection.Call("projectiles.insert",
 JSONObject.CreateStringObject(sysStateMulti.ourSpace),
 positionArr,
 directionArr);
}

Fig. 13. The ‘SendSnowball’ function first formats the data, then pushes it into a database called ’projectiles’.
This demonstrates how developers can share custom data types with XSpace.

For remote users, when new data is added to the ’projectiles’ database, the following function is
called. Only the fnal two lines were modifed to instantiate the snowball object. The remaining
calculations are provided by XSpace’s Unity toolkit. The developer only needs to add the fnal two
lines of code (see Figure 14).

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

568:22 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

public void ThrowSnowball(JSONObject position, JSONObject direction) {

 // XSpace: Format data
 if (position == null) return;
 Vector3 originalPos = new Vector3(...);
 if (direction == null) return;
 Vector3 originalDir = new Vector3(...);

 // XSpace: Transform from world position to local position (provided by toolkit)
 Vector3 newPos;
 if (sysStateMulti.ourSpace == "A")
 {
 newPos = originalPos + (this.gameObject.GetComponent<RoomHandler>().RoomBPos -

 this.gameObject.GetComponent<RoomHandler>().RoomAPos);
 }
 else
 {
 newPos = originalPos + (this.gameObject.GetComponent<RoomHandler>().RoomAPos -

 this.gameObject.GetComponent<RoomHandler>().RoomBPos);
 }

 // Developer: Code modified to create a snowball
 Vector3 newDir = originalDir;
 GameObject snowball = Instantiate(snowballPrefab, newPos, Quaternion.identity);
 snowball.GetComponent<Rigidbody>().AddForce(newDir * 400);
}

Fig. 14. When remote users receive a Snowball, XSpace transforms the given coordinates into its local position.

B IMPLEMENTATION DETAILS

Here we provide more information about our implementation of the shared anchors operation,
specifcally how coordinates are translated from one space to another.

For two anchor pairs, We let the vector between the anchors act as the world forward vector of
the coordinate space, and reorient all positions accordingly. This vector’s magnitude is also used to
defne a scaling factor between the two spaces.
Let ��� , ��� defne the positions of two anchor objects in the local space, ��� , ��

corresponding anchor objects in the remote space, and
� defne the

 ��
To determine the position of the remote user in the local

�

envir
��� defne the position of the remote user.

 onment, denoted
′

�
�

the following computation:
����

, we perform

′ ������ − ���
� = ∥��� − ��� ∥��� + ��� ����� ∥��� − ��� ∥

Where ��� defnes a transformation matrix that rotates from �� −
� ��� to �� −

� ��� . ��� also defnes
the mapping of the remote avatar’s rotation to the local space.
When three or more defned pairs are defned, we only consider the three anchors closest to

the object we would like to position. We can then consider the three anchor points as creating a
barycentric coordinate system. To translate an object’s orientation, we frst calculate directional
vectors between the center of the anchor formed triangle and each of the anchors.

Let ��� , ��� , ��� defne the positions of two anchor objects in the local space, ��� , ��� , ��� defne
the corresponding anchor objects in the remote space, and ������ defne the position of the remote
user. To determine the position of the remote user in the local environment, denoted �

′ , we
�

perform
����

 the following computation:
′

� = ���� + ���� + ���� �����

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

XSpace: Spatially-Aware Distributed Collaboration 568:23

where ∥ (�� −�
 �)×(�� −��) ∥ , ∥ (� −�)×(� −�) ∥ , ∥ (�� −��)×(�

 � −) ∥
� = � ���� � ����

� = �� ����� �� � ������ �
� ���� � ����

∥ (�� −��)×(�� −��) ∥ ∥ (−� � � �� �)×(� −�) ∥ = ∥ (� −�)×(� −�) ∥ .
Given the user’s

�

 gaze vector, we calculate which
��

dir
�

 ectional
�� ��

 v

ector
� �� �� �� �

 is closest. Finally, we apply a
rotational matrix representing a quaternion required to rotate the closest directional vector to the
corresponding directional vector in the remote world to determine the remote gaze vector.
Let 1 �� (+ +)

���� defne the direction of the remote user’s gaze. Let ����� = ��� ��� ��� and 3
1�� (+ +)

��� = �3 �� ��� ��� . We compute the remote user’s gaze in the local environment as follows:
′ ′

� � �����
= ������ �����

Where ������ is a transformation matrix defned as follows: 
rotation from (��� − �����) to (��� − �����) if ������ · (��� − �����) is greatest

������ = rotation from (��� − �����) to (��� − �����) if ������ · (��� − �����) is greatest rotation from (��� − �����) to (��� − �����) if ������ · (��� − �����) is greatest

REFERENCES
[1] A-Frame. 2021. A-Frame. https://aframe.io/
[2] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K. Chilana. 2020. Creating Augmented

and Virtual Reality Applications: Current Practices, Challenges, and Opportunities. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376722

[3] Steve Benford, Chris Brown, Gail Reynard, and Chris Greenhalgh. 1996. Shared Spaces: Transportation, Artifciality, and
Spatiality. In Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work (Boston, Massachusetts,
USA) (CSCW ’96). Association for Computing Machinery, New York, NY, USA, 77–86. https://doi.org/10.1145/240080.
240196

[4] Steve Benford, Chris Greenhalgh, Gail Reynard, Chris Brown, and Boriana Koleva. 1998. Understanding and Con-
structing Shared Spaces with Mixed-Reality Boundaries. ACM Trans. Comput.-Hum. Interact. 5, 3 (Sept. 1998), 185–223.
https://doi.org/10.1145/292834.292836

[5] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock. 2001. Collaborative Virtual Environments. Commun.
ACM 44, 7 (July 2001), 79–85. https://doi.org/10.1145/379300.379322

[6] Hrvoje Benko, Ricardo Jota, and Andrew Wilson. 2012. MirageTable: Freehand Interaction on a Projected Augmented
Reality Tabletop. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). Association for Computing Machinery, New York, NY, USA, 199–208. https://doi.org/10.1145/2207676.2207704

[7] Vincent Cantin. 2016. Unity3D-DDP-Client. https://github.com/green-coder/unity3d-ddp-client.
[8] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Damiani, and Misa Ivkovic. 2011. Augmented

Reality Technologies, Systems and Applications. Multimedia tools and applications 51, 1 (2011), 341–377. https:
//doi.org/10.1007/s11042-010-0660-6

[9] Yifei Cheng, Yukang Yan, Xin Yi, Yuanchun Shi, and David Lindlbauer. 2021. SemanticAdapt: Optimization-based
Adaptation of Mixed Reality Layouts Leveraging Virtual-Physical Semantic Connections. In UIST ’21: The 34th Annual
ACM Symposium on User Interface Software and Technology, Virtual Event, USA, October 10-14, 2021, Jefrey Nichols,
Ranjitha Kumar, and Michael Nebeling (Eds.). ACM, 282–297. https://doi.org/10.1145/3472749.3474750

[10] Kevin Chow, Caitlin Coyiuto, Cuong Nguyen, and Dongwook Yoon. 2019. Challenges and Design Considerations for
Multimodal Asynchronous Collaboration in VR. Proceedings of the ACM on Human-Computer Interaction 3, CSCW
(2019), 1–24. https://doi.org/10.1145/3359142

[11] Ben J Congdon, Tuanfeng Wang, and Anthony Steed. 2018. Merging Environments for Shared Spaces in Mixed Reality.
In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. 1–8. https://doi.org/10.1145/
3281505.3281544

[12] Paul Dourish and Victoria Bellotti. 1992. Awareness and Coordination in Shared Workspaces. In Proceedings of the
1992 ACM Conference on Computer-Supported Cooperative Work (Toronto, Ontario, Canada) (CSCW ’92). Association
for Computing Machinery, New York, NY, USA, 107–114. https://doi.org/10.1145/143457.143468

[13] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian, Joao Afonso, Jose Pascoal,
Josh Gladstone, Nuno Cruces, Shahram Izadi, Adarsh Kowdle, Konstantine Tsotsos, and David Kim. 2020. DepthLab:
Real-Time 3D Interaction with Depth Maps for Mobile Augmented Reality. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing
Machinery, New York, NY, USA, 829–843. https://doi.org/10.1145/3379337.3415881

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://aframe.io/
https://doi.org/10.1145/3313831.3376722
https://doi.org/10.1145/240080.240196
https://doi.org/10.1145/240080.240196
https://doi.org/10.1145/292834.292836
https://doi.org/10.1145/379300.379322
https://doi.org/10.1145/2207676.2207704
https://github.com/green-coder/unity3d-ddp-client
https://doi.org/10.1007/s11042-010-0660-6
https://doi.org/10.1007/s11042-010-0660-6
https://doi.org/10.1145/3472749.3474750
https://doi.org/10.1145/3359142
https://doi.org/10.1145/3281505.3281544
https://doi.org/10.1145/3281505.3281544
https://doi.org/10.1145/143457.143468
https://doi.org/10.1145/3379337.3415881

568:24 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

[14] Andreas Fender and Jörg Müller. 2019. SpaceState: Ad-Hoc Defnition and Recognition of Hierarchical Room States
for Smart Environments. In Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces
(Daejeon, Republic of Korea) (ISS ’19). Association for Computing Machinery, New York, NY, USA, 303–314. https:
//doi.org/10.1145/3343055.3359715

[15] Andreas Rene Fender, Hrvoje Benko, and Andy Wilson. 2017. MeetAlive: Room-scale Omni-Directional Display System
for Multi-User Content and Control Sharing. In Proceedings of the 2017 ACM international conference on interactive
surfaces and spaces. 106–115. https://doi.org/10.1145/3132272.3134117

[16] Epic Games. 2021. Unreal Engine. https://www.unrealengine.com/
[17] Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani. 2020. StoryMakAR: Bringing Stories

to Life with an Augmented Reality & Physical Prototyping Toolkit for Youth. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–14. https://doi.org/10.1145/3313831.3376790

[18] Anhong Guo, Ilter Canberk, Hannah Murphy, Andrés Monroy-Hernández, and Rajan Vaish. 2019. Blocks: Collaborative
and Persistent Augmented Reality Experiences. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3, Article 83
(Sept. 2019), 24 pages. https://doi.org/10.1145/3351241

[19] Carl Gutwin and Saul Greenberg. 1996. Workspace Awareness for Groupware. In Conference Companion on Human
Factors in Computing Systems (Vancouver, British Columbia, Canada) (CHI ’96). Association for Computing Machinery,
New York, NY, USA, 208–209. https://doi.org/10.1145/257089.257284

[20] Jeremy Hartmann, Christian Holz, Eyal Ofek, and Andrew D. Wilson. 2019. RealityCheck: Blending Virtual Envi-
ronments with Situated Physical Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300577

[21] Christian Heath and Paul Luf. 1991. Collaborative Activity and Technological Design: Task Coordination in London
Underground Control Rooms. In Proceedings of the Second European Conference on Computer-Supported Cooperative
Work ECSCW’91. Springer, 65–80.

[22] Hikaru Ibayashi, Yuta Sugiura, Daisuke Sakamoto, Natsuki Miyata, Mitsunori Tada, Takashi Okuma, Takeshi Kurata,
Masaaki Mochimaru, and Takeo Igarashi. 2015. Dollhouse VR: A Multi-View, Multi-User Collaborative Design
Workspace with VR Technology. In SIGGRAPH Asia 2015 Emerging Technologies (Kobe, Japan) (SA ’15). Association for
Computing Machinery, New York, NY, USA, Article 8, 2 pages. https://doi.org/10.1145/2818466.2818480

[23] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve
Hodges, Dustin Freeman, Andrew Davison, and Andrew Fitzgibbon. 2011. KinectFusion: Real-Time 3D Reconstruction
and Interaction Using a Moving Depth Camera. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New York,
NY, USA, 559–568. https://doi.org/10.1145/2047196.2047270

[24] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair MacIntyre,
Nikunj Raghuvanshi, and Lior Shapira. 2014. RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-
Camera Units. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu,
Hawaii, USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA, 637–644. https://doi.org/10.
1145/2642918.2647383

[25] André Kunert, Alexander Kulik, Stephan Beck, and Bernd Froehlich. 2014. Photoportals: Shared References in Space
and Time. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing
(Baltimore, Maryland, USA) (CSCW ’14). Association for Computing Machinery, New York, NY, USA, 1388–1399.
https://doi.org/10.1145/2531602.2531727

[26] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation
Strategies for HCI Toolkit Research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–17. https://doi.org/10.1145/3173574.3173610

[27] Daniel Leithinger, Sean Follmer, Alex Olwal, and Hiroshi Ishii. 2014. Physical Telepresence: Shape Capture and Display
for Embodied, Computer-Mediated Remote Collaboration. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 461–470. https://doi.org/10.1145/2642918.2647377

[28] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong Nguyen, Rubaiat Habib Kazi, and Paul
Asente. 2021. Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration. In UIST ’21:
The 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, October 10-14, 2021,
Jefrey Nichols, Ranjitha Kumar, and Michael Nebeling (Eds.). ACM, 626–637. https://doi.org/10.1145/3472749.3474774

[29] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto: Rapid Augmented Reality Video
Prototyping Using Sketches and Enaction. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13. https:
//doi.org/10.1145/3313831.3376160

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://doi.org/10.1145/3343055.3359715
https://doi.org/10.1145/3343055.3359715
https://doi.org/10.1145/3132272.3134117
https://www.unrealengine.com/
https://doi.org/10.1145/3313831.3376790
https://doi.org/10.1145/3351241
https://doi.org/10.1145/257089.257284
https://doi.org/10.1145/3290605.3300577
https://doi.org/10.1145/2818466.2818480
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2642918.2647383
https://doi.org/10.1145/2642918.2647383
https://doi.org/10.1145/2531602.2531727
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/2642918.2647377
https://doi.org/10.1145/3472749.3474774
https://doi.org/10.1145/3313831.3376160
https://doi.org/10.1145/3313831.3376160

XSpace: Spatially-Aware Distributed Collaboration 568:25

[30] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-Aware Online Adaptation of Mixed Reality
Interfaces. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. 147–160.
https://doi.org/10.1145/3332165.3347945

[31] David Lindlbauer and Andy D. Wilson. 2018. Remixed Reality: Manipulating Space and Time in Augmented Reality.
Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173703

[32] Stephan Lukosch, Mark Billinghurst, Leila Alem, and Kiyoshi Kiyokawa. 2015. Collaboration in Augmented Reality.
Computer Supported Cooperative Work (CSCW) 24, 6 (2015), 515–525.

[33] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David Bolter. 2004. DART: A Toolkit for Rapid Design
Exploration of Augmented Reality Experiences. In Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology (Santa Fe, NM, USA) (UIST ’04). Association for Computing Machinery, New York, NY, USA,
197–206. https://doi.org/10.1145/1029632.1029669

[34] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. 2011. The Proximity Toolkit: Prototyping
Proxemic Interactions in Ubiquitous Computing Ecologies. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing Machinery,
New York, NY, USA, 315–326. https://doi.org/10.1145/2047196.2047238

[35] Meteor. 2021. Meteor. https://www.meteor.com/
[36] Microsoft. 2018. Mixed Reality Toolkit Unity. https://github.com/microsoft/MixedRealityToolkit-Unity.
[37] Microsoft. 2021. Microsoft Mesh. https://www.microsoft.com/en-us/mesh
[38] Jens Müller, Roman Rädle, and Harald Reiterer. 2017. Remote Collaboration With Mixed Reality Displays: How Shared

Virtual Landmarks Facilitate Spatial Referencing. Association for Computing Machinery, New York, NY, USA, 6481–6486.
https://doi.org/10.1145/3025453.3025717

[39] Jens Müller, Roman Rädle, and Harald Reiterer. 2017. Remote Collaboration With Mixed Reality Displays: How Shared
Virtual Landmarks Facilitate Spatial Referencing. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
6481–6486. https://doi.org/10.1145/3025453.3025717

[40] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung, Piaoyang Wang, and Janet Nebeling.
2020. XRDirector: A Role-Based Collaborative Immersive Authoring System. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376637

[41] Michael Nebeling and Katy Madier. 2019. 360proto: Making Interactive Virtual Reality & Augmented Reality Prototypes
from Paper. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300826

[42] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Rumble. 2018. ProtoAR: Rapid Physical-Digital Prototyping of
Mobile Augmented Reality Applications. Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173927

[43] Benjamin Nuernberger, Eyal Ofek, Hrvoje Benko, and Andrew D Wilson. 2016. Snaptoreality: Aligning Augmented
Reality to the Real World. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 1233–1244.
https://doi.org/10.1145/2858036.2858250

[44] Kenton O’hara, Jesper Kjeldskov, and Jeni Paay. 2011. Blended Interaction Spaces for Distributed Team Collaboration.
ACM Trans. Comput.-Hum. Interact. 18, 1, Article 3 (May 2011), 28 pages. https://doi.org/10.1145/1959022.1959025

[45] Dan R Olsen Jr. 2007. Evaluating User Interface Systems Research. In Proceedings of the 20th annual ACM symposium
on User interface software and technology. 251–258. https://doi.org/10.1145/1294211.1294256

[46] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim,
Philip L. Davidson, Sameh Khamis, Mingsong Dou, Vladimir Tankovich, Charles Loop, Qin Cai, Philip A. Chou, Sarah
Mennicken, Julien Valentin, Vivek Pradeep, Shenlong Wang, Sing Bing Kang, Pushmeet Kohli, Yuliya Lutchyn, Cem
Keskin, and Shahram Izadi. 2016. Holoportation: Virtual 3D Teleportation in Real-Time. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing
Machinery, New York, NY, USA, 741–754. https://doi.org/10.1145/2984511.2984517

[47] Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek, and Andrew Wilson. 2016. Room2Room: Enabling Life-
Size Telepresence in a Projected Augmented Reality Environment. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing (San Francisco, California, USA) (CSCW ’16). Association
for Computing Machinery, New York, NY, USA, 1716–1725. https://doi.org/10.1145/2818048.2819965

[48] Iulian Radu, Tugce Joy, Yiran Bowman, Ian Bott, and Bertrand Schneider. 2021. A Survey of Needs and Features for
Augmented Reality Collaborations in Collocated Spaces. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 169
(April 2021), 21 pages. https://doi.org/10.1145/3449243

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://doi.org/10.1145/3332165.3347945
https://doi.org/10.1145/3173574.3173703
https://doi.org/10.1145/1029632.1029669
https://doi.org/10.1145/2047196.2047238
https://www.meteor.com/
https://www.microsoft.com/en-us/mesh
https://doi.org/10.1145/3025453.3025717
https://doi.org/10.1145/3025453.3025717
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3290605.3300826
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1145/2858036.2858250
https://doi.org/10.1145/1959022.1959025
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2984511.2984517
https://doi.org/10.1145/2818048.2819965
https://doi.org/10.1145/3449243
https://github.com/microsoft/MixedRealityToolkit-Unity

568:26 J. Herskovitz, Y. Cheng, A. Guo, A. P. Sample, M. Nebeling

[49] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi Kohno, and Helen J Wang. 2014. World-Driven
Access Control for Continuous Sensing. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security. 1169–1181. https://doi.org/10.1145/2660267.2660319

[50] Robert W. Root. 1988. Design of a Multi-Media Vehicle for Social Browsing. In Proceedings of the 1988 ACM Conference
on Computer-Supported Cooperative Work (Portland, Oregon, USA) (CSCW ’88). Association for Computing Machinery,
New York, NY, USA, 25–38. https://doi.org/10.1145/62266.62269

[51] Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2019. Secure Multi-User Content Sharing for Augmented
Reality Applications. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 141–158. https://www.usenix.
org/conference/usenixsecurity19/presentation/ruth

[52] Kjeld Schmidt and Carla Simone. 1996. Coordination Mechanisms: Towards a Conceptual Foundation of CSCW
Systems Design. Comput. Support. Cooperative Work. 5, 2/3 (1996), 155–200. https://doi.org/10.1007/BF00133655

[53] Gareth Smith. 1996. Cooperative Virtual Environments: Lessons from 2D Multi User Interfaces. In Proceedings of the
1996 ACM Conference on Computer Supported Cooperative Work (Boston, Massachusetts, USA) (CSCW ’96). Association
for Computing Machinery, New York, NY, USA, 390–398. https://doi.org/10.1145/240080.240350

[54] Maurício Sousa, Daniel Mendes, Rafael Kufner Dos Anjos, Daniel Medeiros, Alfredo Ferreira, Alberto Raposo,
João Madeiras Pereira, and Joaquim Jorge. 2017. Creepy Tracker Toolkit for Context-Aware Interfaces. In Proceedings
of the 2017 ACM International Conference on Interactive Surfaces and Spaces (Brighton, United Kingdom) (ISS ’17).
Association for Computing Machinery, New York, NY, USA, 191–200. https://doi.org/10.1145/3132272.3134113

[55] Spatial. 2021. Spatial. https://spatial.io/
[56] Maximilian Speicher, Jingchen Cao, Ao Yu, Haihua Zhang, and Michael Nebeling. 2018. 360Anywhere: Mobile Ad-Hoc

Collaboration in Any Environment Using 360 Video and Augmented Reality. Proc. ACM Hum.-Comput. Interact. 2,
EICS, Article 9 (June 2018), 20 pages. https://doi.org/10.1145/3229091

[57] Maximilian Speicher, Brian D. Hall, Ao Yu, Bowen Zhang, Haihua Zhang, Janet Nebeling, and Michael Nebeling. 2018.
XD-AR: Challenges and Opportunities in Cross-Device Augmented Reality Application Development. Proc. ACM
Hum.-Comput. Interact. 2, EICS, Article 7 (June 2018), 24 pages. https://doi.org/10.1145/3229089

[58] M. Sra, S. Garrido-Jurado, and P. Maes. 2018. Oasis: Procedurally Generated Social Virtual Spaces from 3D Scanned
Real Spaces. IEEE Transactions on Visualization and Computer Graphics 24, 12 (2018), 3174–3187. https://doi.org/10.
1109/TVCG.2017.2762691

[59] Misha Sra, Aske Mottelson, and Pattie Maes. 2018. Your Place and Mine: Designing a Shared VR Experience for
Remotely Located Users. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong Kong, China) (DIS
’18). Association for Computing Machinery, New York, NY, USA, 85–97. https://doi.org/10.1145/3196709.3196788

[60] Aaron Staford, Wayne Piekarski, and Bruce H Thomas. 2006. Implementation of God-Like Interaction Techniques for
Supporting Collaboration Between Outdoor AR and Indoor Tabletop Users. In 2006 IEEE/ACM International Symposium
on Mixed and Augmented Reality. IEEE, 165–172. https://doi.org/10.1109/ISMAR.2006.297809

[61] Unity Technologies. 2021. Unity. https://unity.com/
[62] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjoern Hartmann, and Tovi Grossman. 2019.

Loki: Facilitating Remote Instruction of Physical Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 161–174. https://doi.org/10.1145/3332165.3347872

[63] Three.js. 2021. Three.js. https://threejs.org/
[64] Unity. 2021. Unity MARS. https://unity.com/products/unity-mars
[65] Chiu-Hsuan Wang, Chia-En Tsai, Seraphina Yong, and Liwei Chan. 2020. Slice of Light: Transparent and Integrative

Transition Among Realities in a Multi-HMD-User Environment. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New
York, NY, USA, 805–817. https://doi.org/10.1145/3379337.3415868

[66] Robert Xiao, Chris Harrison, and Scott E. Hudson. 2013. WorldKit: Rapid and Easy Creation of Ad-Hoc Interactive
Applications on Everyday Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY, USA, 879–888. https://doi.org/10.
1145/2470654.2466113

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 568. Publication date: December 2022.

https://doi.org/10.1145/2660267.2660319
https://doi.org/10.1145/62266.62269
https://www.usenix.org/conference/usenixsecurity19/presentation/ruth
https://www.usenix.org/conference/usenixsecurity19/presentation/ruth
https://doi.org/10.1007/BF00133655
https://doi.org/10.1145/240080.240350
https://doi.org/10.1145/3132272.3134113
https://spatial.io/
https://doi.org/10.1145/3229091
https://doi.org/10.1145/3229089
https://doi.org/10.1109/TVCG.2017.2762691
https://doi.org/10.1109/TVCG.2017.2762691
https://doi.org/10.1145/3196709.3196788
https://doi.org/10.1109/ISMAR.2006.297809
https://unity.com/
https://doi.org/10.1145/3332165.3347872
https://threejs.org/
https://unity.com/products/unity-mars
https://doi.org/10.1145/3379337.3415868
https://doi.org/10.1145/2470654.2466113
https://doi.org/10.1145/2470654.2466113
https://Three.js
https://Three.js

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mutual Awareness
	2.2 Collaboration in XR
	2.3 XR Prototyping and Development Tools

	3 Designing Collaborative Spaces
	3.1 Object-Centric Methods
	3.2 Perspective-Driven Methods
	3.3 Mesh-Based Methods

	4 XSpace
	4.1 System Walkthrough
	4.2 XSpace Toolkit
	4.3 XSpace Server and Database API
	4.4 Visual Design Tools

	5 Example Applications
	5.1 Snowball Throw (Multiplayer Game)
	5.2 Room Design (Collaborative Furniture Layout)
	5.3 Office Space (Shared Work Space)
	5.4 Further Examples

	6 Discussion
	6.1 Technical Reflection
	6.2 Limitations

	7 Future Work
	7.1 Automation vs. End-User Customization
	7.2 Privacy and Safety
	7.3 XSpace as a Future Research Platform

	8 Conclusion
	Acknowledgments
	A Code Sample
	B Implementation Details
	References

