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Abstract 
Recent advancements in large multimodal models have provided 
blind or visually impaired (BVI) individuals with new capabilities 
to interpret and engage with the real world through interactive 
systems that utilize live video feeds. However, the potential benefits 
and challenges of such capabilities to support diverse real-world 
assistive tasks remain unclear. In this paper, we present findings 
from an exploratory study with eight BVI participants. Participants 
used ChatGPT’s Advanced Voice with Video, a state-of-the-art live 
video AI released in late 2024, in various real-world scenarios, from 
locating objects to recognizing visual landmarks, across unfamil-
iar indoor and outdoor environments. Our findings indicate that 
current live video AI effectively provides guidance and answers 
for static visual scenes but falls short in delivering essential live 
descriptions required in dynamic situations. Despite inaccuracies 
in spatial and distance information, participants leveraged the pro-
vided visual information to supplement their mobility strategies. 
Although the system was perceived as human-like due to high-
quality voice interactions, assumptions about users’ visual abilities, 
hallucinations, generic responses, and a tendency towards syco-
phancy led to confusion, distrust, and potential risks for BVI users. 
Based on the results, we discuss implications for assistive video 
AI agents, including incorporating additional sensing capabilities 
for real-world use, determining appropriate intervention timing be-
yond turn-taking interactions, and addressing ecological and safety 
concerns. 
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• Human-centered computing → Empirical studies in acces-
sibility; Accessibility technologies. 
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1 Introduction 
Recent advancements in large multimodal models (LMMs) have 
significantly advanced assistive technologies, empowering blind 
or visually impaired (BVI) individuals to independently access, in-
terpret, and interact with their environments. Traditionally, BVI 
users relied on sighted assistance by capturing images and request-
ing visual descriptions from online crowd workers [20, 86], or 
sought real-time guidance through remote sighted assistance (RSA) 
services like BeMyEyes [2] and Aira [1]. More recently, LMMs-
powered applications, such as Be My AI [5] and SeeingAI [8], have 
enabled greater autonomy by allowing users to interactively ob-
tain visual information directly from photos through AI-driven 
conversations. Prior research has explored how BVI individuals 
incorporate these emerging technologies into their daily routines, 
which offered valuable insights into both their practical utility and 
ongoing challenges for future development of assistive technolo-
gies [11, 16, 22, 31, 36, 72, 73, 75, 91, 92]. 

Figure 1: Illustration of user turn-taking interactions with 
ChatGPT’s live video AI. The screenshots were cropped from 
the video recording of P5. 
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On December 12, 2024, OpenAI introduced ChatGPT Advanced 
Voice with Video1[3], a state-of-the-art live video AI system that 
enables visual question-answering (VQA) through live video feeds. 
This innovation allowed users to directly query and access the 
dynamic real world in real time, which eased the previous need and 
efforts to capture static photos and await responses. However, at 
the time of our study, this feature was still available only through 
a costly subscription-based service with daily usage limitations. 
Although a partnership between Be My Eyes [2] and OpenAI was 
announced, the limited availability of ChatGPT’s live video AI for 
most potential users restricted opportunities to conduct contextual 
inquiries into its natural integration within their daily routines. 

To address this limitation and investigate how live video AI 
could effectively assist BVI individuals in practical, everyday tasks, 
we conducted an in-person user study with eight BVI participants. 
Drawing from prior research, we created diverse task scenarios de-
signed to engage participants with ChatGPT’s live video AI. These 
scenarios included tasks such as identifying unknown objects, dis-
tinguishing multiple objects, recognizing prominent visual land-
marks, and locating specific items or landmarks within unfamiliar 
indoor and outdoor environments. Specifically, we aimed to under-
stand these questions: 
RQ1: How do BVI users leverage ChatGPT to accomplish a variety 

of visual access tasks? 
RQ2: How do BVI users perceive ChatGPT (and vice versa)? 
RQ3: What are the limitations of ChatGPT that hinder its effec-

tiveness? 
We found that ChatGPT was able to provide hands-on, useful 

guidance and information for tasks, such as guiding users to aim at 
objects to reduce glare, reading labels, or identifying static visual 
information. Also, participants regarded ChatGPT as a tool to com-
plement their own orientation and mobility (O&M) skills rather 
than a complete replacement for traditional assistive methods. How-
ever, participants faced difficulties due to ChatGPT’s inability to 
provide live descriptions during dynamic activities, which forced 
participants into repetitive interactions. 

Also, participants generally found interactions with ChatGPT 
realistic and human-like due to the fluid conversation nature. How-
ever, trust was undermined when ChatGPT incorrectly assumed 
visual abilities, which requested visual verification from its users or 
suggested seeking help from other sighted individuals. In response, 
users developed strategies to explicitly inform ChatGPT about their 
visual impairments, though ChatGPT consistently failed to fully 
adapt to these clarifications. 

Finally, we identified several key limitations. For instance, Chat-
GPT’s responses often relied on general knowledge rather than 
being grounded in users’ immediate reality. Its tendency to re-
spond overly affirmatively sometimes resulted in incorrect confir-
mations or potentially harmful guidance. Also, the lack of accurate 
visual memory and spatial awareness led to incorrect instructions 
and required users to generate redundant and repetitive prompts. 
Based on these findings, we discussed implications for designing a 
context-aware video AI agent towards real-world assistive use. This 
included enhancing mutual understanding and awareness between 
users and the AI’s capabilities, integrating new sensing capabilities 
1We refer to this feature as ChatGPT throughout this paper. 

Figure 2: The scope of our work, situated in other literature 
that explored the assistive technologies used in the daily 
lives of BVI. We focused on how live video AI could be used 
for real-world assistive use. 

for real-world assistive perception, balancing general knowledge 
with specific information, and navigating issues of trust and realism 
in human-like AI assistance. 

2 Related Work 
This work was inspired by the evolution of human and AI-powered 
VQA systems and the information needs of BVI users in different 
scenarios, which motivated our study task design. 

2.1 From Human to AI-powered System for 
Real-World Accessibility 

Traditionally, BVI individuals could capture a photo and request 
visual descriptions by seeking assistance from online crowd work-
ers [20, 86]. Currently, RSA services, such as BeMyEyes [2] and 
Aira [1], connect BVI users with sighted agents through video calls, 
providing real-time verbal guidance to address dynamic requests. 
However, conveying visual information in real time can be challeng-
ing for sighted agents due to the high cognitive load and temporal 
demands involved in rapidly interpreting and verbally communicat-
ing visual environments [37, 43, 57, 58]. Additionally, RSA services 
can raise privacy concerns [23], incur high costs (e.g., $65 per month 
for professional services such as Aira [1]), and volunteer-based op-
tions like Be My Eyes [2] may not always be available. 

With recent advancements in AI, LMMs have revealed the poten-
tial to apply AI to the real-world applications previously unattain-
able without human intervention, such as navigation [48, 98], cam-
era aiming [94], text input suggestion [63], image editing [26], and 
photo reminisce [93]. Commercial assistive applications, including 
Be My AI [5] and SeeingAI [8], enable users to obtain answers to 
queries about photos or images and BVI users could also explore 
the descriptions more interactively, such as using touch-based ex-
ploration [4, 50, 71]. Recently, AI-powered assistive technology has 
evolved beyond static images toward dynamic media. Applications 
such as SeeingAI [8] and PiccyBot [7] have introduced features 
for providing video description, and also allowed BVI users to ask 
follow-up questions [7, 83]. However, these solutions still face lim-
itations in rapidly changing, real-time scenarios that necessitate 
immediate and dynamic description generation. WorldScribe [25], 
developed to provide live visual descriptions during real-world ex-
ploration, may not always sufficiently adapt to the evolving needs 
and intents of users navigating dynamic environments. 

In December 12, 2024, OpenAI introduced the “ChatGPT Ad-
vanced Voice with Video” [3], enabling VQA through live video 
feeds. This allowed users to dynamically converse with AI according 
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to their immediate informational needs and evolving intents. Un-
like image-based non-voice systems that offer detailed descriptions, 
video-based interactions present short, immediate conversational 
responses with a human-like voice and tone. This opened both 
new possibilities and challenges for independently engaging with 
their real-world visual surrounding without the sighted assistance. 
Hence, different from prior studies that explored commercial AI-
powered photo-based technologies for BVI users (e.g., Orcam [6, 32], 
BeMyAI [19, 91], and SeeingAI [32, 47]), our research investigates 
how ChatGPT’s new capability can enhance assistive interactions 
beyond traditional photo-based VQA methods. 

2.2 Information Needs of BVI People in 
Different Scenarios 

BVI individuals face a number of challenges in everyday tasks. 
Early research analyzing over 4,000 photo-based questions [22] 
found that BVI users often struggle with tasks ranging from basic 
activities such as locating objects [12, 31, 67] and reading object 
labels [21, 22, 54], to more complex ones like identifying visual 
landmarks [24, 31] or interpreting scenes with intricate spatial 
relationships [100]. Moreover, the information needs of BVI users 
vary depending on both the context of access and the type of image 
content (e.g., object versus scene) [31, 45, 68, 84, 85]. For example, 
during grocery shopping, users may need to locate a product and 
read associated text labels (e.g., expiration dates, nutritional facts), 
but also rely on contextual visual cues not explicitly labeled, such 
as signs of damage or wear (e.g., scratches). Therefore, in this paper, 
we designed a range of object understanding scenarios, including 
object localization, comparison, and label reading, to better support 
the diverse needs of BVI individuals for real-world information 
access (Table 2). 

In addition to object understanding, BVI users have critical infor-
mation needs related to their surrounding environments to support 
safety, independence [18, 42], and efficient navigation [9, 33, 59]. 
These needs could vary significantly depending on whether the 
context is indoor or outdoor. Traditional assistive navigation tech-
nologies often struggled to operate seamlessly across both set-
tings [33, 46, 70, 82, 90], particularly due to the limitations of GPS 
in indoor environments [28, 42, 78]. Indoor spaces tended to be 
more complex, characterized by multiple floors, narrower path-
ways, and denser obstacles, which necessitated specialized navi-
gation strategies [69, 78]. Studies have shown that in indoor envi-
ronments, BVI individuals built spatial awareness and memorized 
routes by associating landmarks [9, 14, 15, 88], and preferred ego-
centric directional cues such as heading, direction, and distance 
traveled [64, 88]. In contrast, when navigating outdoor environ-
ments, BVI users prioritized essential wayfinding details such as 
landmarks, routes, crossing points, and building features like en-
trances [22, 40], as well as real-time information regarding obstacles, 
current location, orientation, and accessibility features [9, 12, 59]. 
To date, many of these complex tasks still require assistance from 
sighted individuals, primarily due to their high-stakes implications 
for safety [37, 43, 57, 58]. Motivated by this challenge, we explore 
whether live video powered by LMMs can provide comparable sup-
port to that of human assistance, and what gaps still remain. To 

investigate this, we present a set of scenarios centered on under-
standing visual landmarks and navigating toward them, tasks that 
GPS alone cannot adequately support. 

In summary, building on prior work, we designed four tasks 
focused on object understanding and five on navigation (Table 2). 
These scenarios varied across several dimensions, including visual 
complexity (e.g., the number of objects in the object understanding 
tasks), intent ambiguity (e.g., specific vs. general), location (e.g., 
indoor vs. outdoor), and spatial scale in an indoor environment (e.g., 
a room vs. a floor). For object understanding, the tasks involved 
understanding an object and describing it as general intent, as well 
as comparing fine-grained differences between similar items as 
specific intent. For navigation, we developed tasks centered on 
visual and spatial understanding as general intent and landmark 
localization and navigation as specific intent. We also considered 
differences in navigation between indoor and outdoor environments. 
Specifically, within indoor settings, we explored tasks at low (e.g., 
within a room) or high spatial complexity (e.g., across a floor). 

3 Study Method 
We conducted an in-person user study involving eight BVI partici-
pants to explore how ChatGPT’s Advanced Voice with Video [3] 
could support a variety of their daily activities. We used this system 
as the primary tool, since, as of 2025, it represents the state-of-
the-art in LMM-powered video interactions, offering the ability of 
visual understanding and high interactivity by voice. Specifically, 
we aimed to answer these research questions: 
RQ1: How do BVI users leverage ChatGPT to accomplish a variety 

of visual access tasks? 
RQ2: How do BVI users perceive ChatGPT (and vice versa)? 
RQ3: What are the limitations of ChatGPT that hinder its effec-

tiveness? 

3.1 Participants 
We recruited eight BVI participants (3 Male and 5 Female) using 
email lists for local accessibility organizations, prior contacts, and 
snowball sampling. Participants aged from 18 to 72 (Avg. 45.5) and 
described their visual impairment as blind (N=6) or having low 
vision (N=2). Most participants had prior experiences using remote 
sighted assistance (RSA) and AI-enabled services, such as Orcam [6], 
BeMyEyes [2], BeMyAI [5], Aira [1], or SeeingAI [8] in their daily 
lives (Table 1). 

3.2 Procedure 
After obtaining their informed consent, we asked participants about 
the use of assistive technologies in their daily life, including navi-
gation apps, text or image recognition apps, and other visual access 
tools. They were then introduced to ChatGPT and instructed on 
how to mute and unmute their phones, allowing them to speak 
with researchers privately without the AI overhearing. 

The study involved certain scenarios conducted in both indoor 
and outdoor environments (Table 2), requiring participants to walk 
and explore. In each scenario, participants used ChatGPT to request 
visual information necessary for completing the task. They were 
encouraged to share feedback at any time. Additionally, researchers 
asked follow-up questions after participants either completed a 
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Table 1: Participants in our user study were marked as P1-P8. 

ID Age Gender Self-Reported Visual Ability Assistive App Use 
P1 41 Male Blind due to Retinitis Pigmentosa, left < 0.5 degree, de-

pends on lighting to identify the color of the object. 
SeeingAI, BeMyAI, BeMyEyes, Aira, Orcam, Sound-
Scape, and VoiceVista 

P2 58 Female Right: blind. Left: Usable vision using a physical magni-
fier. 

SeeingAI, BeMyAI, BeMyEyes, Aira, and Orcam, 

P3 50 Female Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, Aira, Orcam and Blind-
Square 

P4 73 Female Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, and Aira 
P5 41 Male Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, and SoundScape 
P6 60 Female Blind, since birth. BeMyAI and BeMyEyes 
P7 24 Female Blind, acquired since 13. None 
P8 18 Male Low vision due to Stargardt. Right: 20/1000, Left: 20/600, 

Light to Moderate color blindness. 
SeeingAI 

scenario or chose to discontinue it. These questions focused on 
identifying unclear information, perceived errors, the effort needed 
to obtain useful responses, and potential improvements or desired 
solutions. 

During the study, participants were accompanied by two re-
searchers while engaging in specifically designed real-world sce-
narios. Participants were allowed to request assistance anytime 
from the researchers if they were unable to acquire necessary de-
tails from ChatGPT. Given the mobile and exploratory nature of 
the study, researchers ensured participants’ safety by intervening 
when necessary. 

To investigate ChatGPT’s potential in supporting BVI users 
across diverse real-world contexts, we designed everyday scenarios 
with varying levels of complexity. As mentioned in Section 2.2, 
these scenarios differed based on factors such as visual complexity 
(e.g., number of objects in the object understanding task), intent 
ambiguity (e.g., specific vs. general), location (e.g., indoor vs. out-
door), and spatial complexity in the indoor environment (e.g., a 
room vs. a floor). Note that our goal was not necessarily for par-
ticipants to complete every task, but rather to provide meaningful 
opportunities for them to engage with ChatGPT purposefully. We 
detailed the task setup and instructions we gave to our participants 
in Table 2. 

The study took two hours in total, and each participant was 
compensated with their transportation costs and $50 for their par-
ticipation. This study was approved by the IRB in our institution. 

3.3 Apparatus 
ChatGPT’s new feature, “Advanced Voice with Video,” was released 
on December 12, 2024, as a subscription-based service. However, 
its high cost and daily usage limits reduced its accessibility. Par-
ticipants were briefly introduced to the feature and engaged in a 
short conversation with it before proceeding to the main scenarios. 
Participants held the phone with a clip-on guide to assist in locating 
the mute button during the study, allowing them to quickly mute 
ChatGPT while speaking with us and unmute it when they wished 
to interact with ChatGPT. 

3.4 Data and Analysis 
All interaction sessions between users and ChatGPT were logged. 
And the contextual inquiries were also video recorded and tran-
scribed for analysis. The first author independently performed open 
coding on all transcripts to identify initial codes. The initial coding 
focused on the participants’ strategies of using ChatGPT, partic-
ipants’ feedback on ChatGPT’s responses, and any friction they 
experienced. Another two authors reviewed all coded excerpts and 
iterated on the set of codes through discussion with the first author. 
They then conducted affinity diagramming [35] on the initial codes 
to extract and organize high-level themes. 

4 Results 
In this section, we present our study results organized around the 
research questions. First, we explore ChatGPT’s capabilities and 
examine how participants utilized it across various scenarios. Next, 
we focus on how ChatGPT guided users through tasks by providing 
different types of instructions and information. Finally, we discuss 
participants’ overall perceptions of ChatGPT and investigate its 
assumptions about its intended users. 

4.1 How do BVI users leverage ChatGPT to 
accomplish a variety of visual access tasks? 

In this section, we described how participants utilized ChatGPT 
across various scenarios. Specifically, we provided our observations 
of ChatGPT’s effectiveness in providing suggestions for guiding 
visual search tasks, discussed participants’ needs and strategies for 
prompting it to deliver live descriptions, and described how it could 
be useful to complement their O&M skills. 

4.1.1 Effective suggestions for guiding visual searches. We observed 
mixed feedback from ChatGPT, which influenced task outcomes 
both positively and negatively. First, ChatGPT successfully an-
swered specific questions when the visual scene provided was static 
and contained the relevant information the user sought. For in-
stance, P8, who could not see the object details, showed chocolate 
bars with visible cocoa percentage labels and asked, “Which of these 
3 has the most cocoa in it.” ChatGPT responded accurately: “Based on 
the labels. The bar on the left has 70% cocoa. The middle one has 55%, 
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Table 2: Setup and instructions for each scenario. These scenarios differed based on factors such as Visual Complexity in object 
understanding tasks marked as Low, Middle, and High in red, Intent Ambiguity in blue (e.g., Specific vs. General), Location in 
orange (e.g., Indoor vs. Outdoor) and Spatial Complexity in indoor environment in purple (e.g., Low vs. High). 

Image Scenario Setup Instruction to User Dimensions 

Understanding an 
object 

Participants were given a cup with 
colorful graphics and texts. 

You got a gift from your friend who just traveled 
back from a tourist spot. Can you use ChatGPT 
to understand this object? In terms of color, 
texts, and graphics. 

General 
Low 

Understanding and 
distinguishing two 
different spice bottles 

Participants were given two spice 
bottles from Trader Joe’s, including one 
chili lime seasoning with a red label 
and lid, and another oregano with a 
green label and lid. 

In the grocery store, you have two spice bottles 
with different labels, colors, and texts. Can you 
use ChatGPT to tell the differences and the 
similarities between them? 

General 
Low 

Understanding and 
categorizing four 
spray bottles 

Participants were given two identical 
(from the brand *Everyone*, ruby 
grapefruit), and the other two were 
from the same brand (*Whole Foods 
365*) but had different scents 
(cucumber aloe and lavender) 

You just got the four spray bottles from a shared 
storage in your home. Can you use ChatGPT to 
categorize them based on their brands and 
scents? 

Specific 
middle 

Finding products with 
specific information 

Participants were given three carton of 
juices, including two apple juices (100 
& 35 calories) and one lemonade (100 
calories), and three chocolate bars (55, 
65, 70% of cocoa). 

You want to find some snacks in a shared pantry, 
specifically, the chocolate bars with the most 
cocoa and the apple juice with the fewest 
calories for your health. Can you use ChatGPT 
to help you find them? 

Specific 
High 

Locating an umbrella 
in a room 

A folded umbrella was put on the table 
in front of participants, who were told 
the umbrella was in the room. 

Your partner is at the entrance of the first floor 
and waiting for you to take the umbrella for her. 
Can you use ChatGPT to help you find the 
umbrella in the room? 

Specific 
Indoor 
Low 

Locating stairs or 
elevators on the floor 

Participants were positioned in the 
middle of the hallway, where the 
elevator and stairs were visibly on their 
left, 20 feet away. 

Now you have the umbrella, can you use 
ChatGPT to help locate the stairs or elevator on 
this floor? 

Specific 
Indoor 
High 

Understanding the 
indoor environment 

Participants started in the atrium on the 
first floor of our building, with all floors, 
spiral stairs, and the skyline visible. 

Now you are on the first floor. You want to share 
your experiences here after the study with your 
sighted friends. Can you use ChatGPT to 
understand the building’s interior design, which 
could help spark a conversation with them? 

General 
Indoor 

Locating a sheltered 
outdoor reading spot 

participants started from the outside of 
one building while sheltered benches 
were visibly located at the entrance of 
the next building. 

You are new here and want to find a peaceful 
outdoor spot with a bench and a cover to avoid 
sunshine or rain to enjoy reading. Can you use 
ChatGPT to help locate and navigate to it? 

Specific 
Outdoor 

Understanding 
surroundings for 
rideshare driver 
pickup 

Participants started from the sheltered 
bench, surrounded by buildings, swings, 
sidewalks, and a parking lot is far away 
but visible. 

You just called the Uber driver and want to 
know where you are so that you can describe to 
your driver how to help find you. Can you use 
ChatGPT to help you understand the current 
environment to support this? 

General 
Outdoor 
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and the one on the right has 65%. So the left bar has the highest cocoa 
content.” Instead of simply answering direct questions, ChatGPT 
also offered useful guidance for problem-solving. For example, P5 
attempted to read the information on the chocolate bar (Figure 1): 

P5: Can you read the label for me? 
ChatGPT: Sure, no problem. Could you angle it slightly 
to reduce the glare? 
P5: I’m not sure how to do that. 
ChatGPT: No worries. Just tilt it a bit away from the 
light, and that should help reduce the reflection. 
P5: [After tilting the chocolate] Is this better? 
ChatGPT: Yes, that’s much better. I can confirm this. 
[read the information on the label] 

Additionally, while participants searched for an umbrella in the 
room, ChatGPT provided various interactive and helpful sugges-
tions. For instance, ChatGPT suggested to P4, “Let’s start by checking 
near the door, or maybe under the table. Could it be there? ... Maybe 
in a bag or drawer.” P4 appreciated these ideas and noted that “it 
gave good suggestions that they could have fallen down or in a bag.” 

4.1.2 Steering ChatGPT to describe lively. ChatGPT enabled real-
time VQA based on a live video feed. However, we observed that it 
provided information only when explicitly prompted by the user 
and did not proactively deliver descriptions, even when participants 
requested continuous feedback. All participants attempted to guide 
ChatGPT toward generating live visual descriptions across various 
scenarios but were unsuccessful. For instance, one participant tried 
to obtain information about a spice bottle by asking ChatGPT to 
describe it continuously while rotating the object: 

P1: Okay, I’m going to rotate the one on the left. Tell 
me when you can read the main label. 
ChatGPT: sure go ahead and rotate it. I’ll let you know 
when I can see the main label. [then kept silent] 
P1: Well, I spun it all the way around, and you never 
stopped me. So I’m guessing you can’t really read the 
main label. 

Other participants also tried similar strategies in various other 
scenarios, such as “Can you tell me when you see the umbrella?” 
while searching for an umbrella - P5, or “Can you tell me when 
there are obstacles in the way? ... Tell me when you see signs, or when 
you see the elevator doors.” while navigating an environment - P4. 
Most participants (P1, P3, P4, P5, P6, P7) also questioned ChatGPT’s 
capability to provide live descriptions, explicitly asking it to confirm 
its ability to describe the environment lively and receiving deceptive 
affirmations: 

P5: I don’t think you’re taking pictures on a continuous 
basis. So as I move the camera, you won’t be describing 
anything new to me unless I ask you a specific question. 
Correct? 
ChatGPT: I can see the camera feed in real time. So 
I can describe what I see as you move. No need to ask 
specific questions. Just let me know what you need help 
with. 
P5: Go ahead and just describe what you see as I move 
the camera 
ChatGPT: All right. Now I see the black acoustic panels 

on the wall, a large screen and part of the table with a 
coffee cup. If there’s a specific area you want to explore, 
let me know. 
P5: [After panning the camera around and ChatGPT 
did not respond at all] See? It’s lying to me. 

Due to this limitation, participants adapted by frequently repeating 
short questions. For example, P3 prompted ChatGPT eighteen times 
with, "Do you see the umbrella?", until finally locating it. Participants 
emphasized the need for live descriptions in mobile scenarios rather 
than repeated prompting, as P6 explained: “I had to keep asking 
questions to get additional information. Because I’m in an unfamiliar 
area, I needed to reassure myself that I was still headed the right 
way. Make sure it’s following around things that are obviously like 
walkways or whatever. So verifying that.” 

Also, the lack of efficient memory on previous contexts could also 
make tasks that required repetitive actions more time-consuming 
as it did not fully comprehend prior user prompts to provide con-
tinuously support (Section 4.1.2), as described by P1, who tried 
to understand each spray bottle with similar prompts repetitively: 
“You have to continually read them [spray bottles], and see what they 
say. Maybe having it remember what I’d like to ask when I do it again 
and again is more convenient.” 

4.1.3 Needs and ways to leverage visual descriptions to complement 
O&M skills in different contexts. During our study, we observed 
that directional information provided by ChatGPT was mostly in-
accurate or unclear, a concern also raised by all participants. For 
instance, ChatGPT stated, “I see a staircase behind you that could be 
a good option to get to the 1st floor,” even though P2 was aiming 
the camera forward and there was no staircase behind the user 
based on our video analysis. Also, P7 remarked on the limited use-
fulness of ChatGPT’s directions after trials and errors: “I was not 
following it. I didn’t go against its directions, but I just don’t think it 
gave me really specific directions.” We also found that when entering 
video mode on a smartphone, ChatGPT displays an explicit warning 
on the screen: “Don’t use live navigation or make decisions that may 
impact your health or safety.” , which flashed out quickly and was 
inaccessible to screen reader users. Given this open limitation, in 
this section, we primarily discuss the potential role of ChatGPT as 
a visual prosthetic aid to complement personal navigation skills, 
rather than as a standalone navigation tool comparable to outdoor 
GPS-based or indoor beacon-based systems. 

Due to constraints imposed by the turn-taking interaction ap-
proach, participants frequently prompted ChatGPT to describe their 
visual surroundings during navigation tasks, including identifying 
obstacles or signs. For instance, P6 prompted ChatGPT when search-
ing for the umbrella in the room: “Is there any barrier between me 
and the wall?”, with her reason behind this query: “There’s always 
all kinds of detritus left around in hallways, or people drop things. I 
could slip and fall, so I want to know if it’s a clear path to go.” P1 fur-
ther suggested enabling proactive identification of relevant signs: 
“If it knows I’m looking for stairs and sees a sign for stairs, it should 
say, I see a sign for stairs up ahead,’ or maybe I see a sign for an 
elevator.”’ Participants also expressed that visual descriptions could 
complement existing GPS systems. As remarked by P3, “A lot of 
apps either do one thing and don’t do the other. GPS systems will just 
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navigate you and tell you how to get to a place. But they’re not really 
describing as it goes.” 

Despite the limitation in providing accurate directions, visual 
descriptions provided by ChatGPT could complement participants’ 
existing skills or sensory information. For example, P5 utilized 
information from ChatGPT to supplement, but not replace, his 
mobility skills: “I used my own auditory cues to supplement what 
ChatGPT was saying, because it might be very dangerous for a blind 
person to think this is my mobility need. And this is how I’m going 
to get around. We always want to understand that these are aids to 
mobility. But they’re never going to replace good old-fashioned human 
mobility skills.” P2, who had limited usable vision, also benefited 
from ChatGPT’s visual descriptions when finding the entrance of a 
building, with guidance involving lighting: 

P2: Can you help me find the front door? 
ChatGPT: Of course. The main entrance should be 
straight ahead past the seating area, look like the glass 
doors. 
P2: I can’t necessarily see the glass doors. Is there any 
other direction you can give me? Or is there a landmark 
I may be able to pick up? 
ChatGPT: I see a lot of light, head towards that bright 
area. The doors are right there. 

Afterwards, P2 successfully reached the entrance by the pointer 
of light and her auditory sense: “This is useful. I’m also listening to 
see if I hear someone come in. You know, the other sense kicks in.” 
Similarly, P6 noted that visual descriptions complemented auditory 
cues: “If I need it more for the visual than the audio. Like here, there 
are people talking who I obviously can hear. But if you go there, you 
want to avoid hitting or running into the seating. And that’s what I 
need to know.” 

In terms of location and spatial complexity, we observed that dur-
ing indoor tasks, participants adopted distinct navigation strategies 
using mobility aids and tailored their ChatGPT prompts accord-
ingly. In rooms, they often used their hands to trace surfaces (e.g., 
walls, tables) and frequently asked questions such as “Is the umbrella 
here?”, along with occasional checks for obstacles like “Is anything 
obstructing my path?” In hallways, by contrast, participants, aided 
by a white cane, seldom asked about obstacles that could be de-
tected by the cane. Instead, they focused on prompting ChatGPT 
to identify elevators or relevant signs. Furthermore, indoor naviga-
tion involved more frequent micro-level prompts related to nearby 
objects and spatial layout, whereas outdoor navigation emphasized 
broader spatial orientation and wayfinding. 

4.2 How do BVI users perceive ChatGPT (and 
vice versa)? 

In this section, we explored participants’ perceptions of ChatGPT, 
as well as how ChatGPT perceived participants. Specifically, we 
discussed the reasons behind participants’ tendency to treat and 
perceive ChatGPT as human, the strategies to coach ChatGPT to 
recognize their abilities due to its frequent assumption of users’ 
visual abilities, and ChatGPT’s capacity to provide descriptions 
using non-visual language. 

4.2.1 Users treated ChatGPT as human. In general, participants 
perceived interactions with ChatGPT just like interacting with a 
human due to several advantages, such as “less efforts to take pho-
tos” (P1), “no delay or glitches compared to remote sighted assistance” 
(P2), or “a cheery and realistic voice and being able to talk back and 
forth” (P5). ChatGPT also facilitated the conversation by frequently 
asking questions back, such as “I see a room with a chair and some 
black soundproofing panels in the wall. Are you in a studio?” after P3 
asked for locating the umbrella, or “[info about the chocolate bar], 
what do you prefer?” after P4 asked for the cocoa content of the 
chocolate bars. However, as mentioned in previous sections, par-
ticipants also lost trust in ChatGPT when perceiving its mixed, 
confusing responses along the way, which were not aligned with 
their expectation of how a human-like system should be, such as 
“It’s kind of tricks you into thinking it’s a human being. And so you 
get that false sense of security” (P5), “if the AI were more specific, it 
would be helpful, but, as is now, I wouldn’t use them” (P4) or “Don’t 
really trust it. Cause I will put my safety above convenience every 
time” (P6). 

4.2.2 User strategies to address ability assumptions in ChatGPT. We 
identified several instances where ChatGPT inappropriately asked 
participants to rely on their own vision to verify visual content. For 
example, when ChatGPT was unable to access information from a 
bottle’s label, it directed users to read it themselves, asking ques-
tions like “Are you able to read them off the label?” when P4 requested 
label details, “Are there any signs or doors in front of you?” when P2 
sought an entrance, “Do you notice any signs or landmarks?” when 
P6 requested information about her surroundings, “you can check 
the label for the exact weight.” when P3 accessed the label of spice 
bottles, or “Do you see any closet or storage area?” when P7 searched 
for an umbrella in the room. Such prompts caused confusion and 
frustration for multiple participants (P1, P2, P3, P4, P6, P7) as P7 
remarked: “This was trained for sighted people but not blind people.” 
Moreover, ChatGPT occasionally suggested that participants seek 
assistance from sighted individuals. For instance, it advised P2: “You 
might have to check a sign or ask someone nearby.” Reflecting on this 
interaction, P2 commented: “Do you think someone who is blind 
or visually impaired might feel dismissed when the AI tells them to 
ask someone else? It might feel like the system isn’t truly adapted to 
their disability. Nobody really wants you to know that they cannot 
see because they are always afraid that people will say this to me.” 

Noting that ChatGPT was not originally trained with visually 
impaired users in mind, several participants developed their own 
strategies to help ChatGPT better understand their disability and 
offer more suitable guidance. For example, P1 leveraged his previous 
experience coaching a photo question-answering system, where 
he needed to explicitly mention his visual impairment to receive 
descriptions involving people; otherwise, LMMs typically avoided 
describing humans due to privacy concerns. Consequently, he began 
specifying prompts at the beginning of each conversation, such 
as “GPT, I am blind and I am in an unfamiliar room trying to find 
an umbrella.” Despite this, ChatGPT did not offer additional useful 
descriptions, leading to P1’s frustration, expressed as “I want it to 
tell me what to do to help it help me.” This coaching approach was 
also adopted by other participants. For example, P7: “I am blind. 
I need your help.” P2: “I can’t see the stairs. Is there any way you 
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can help me with that?”, or P4: “I can’t see, you tell me.” Specifically, 
P2, who had usable vision in her left eye but no sight on her right, 
hoped ChatGPT can complement her vision “I’m visually impaired, 
and I don’t have any sight on my right, can this be able to pick up and 
say there’s a door in front of you on your right?” P6 also mentioned 
having cane with her occasionally in her prompt, such as “Do I 
follow the walk along the grass here? I got my cane.” 

Among participants, P5 explored various methods to prompt 
ChatGPT about their disability, such as asking for non-visual de-
scriptions: 

P5: I’m trying to describe this cup using non-visual 
language for a blind person who has never seen. 
ChatGPT: That’s a great idea. Let’s start with the shape 
and size. Is it more like a typical coffee mug or some-
thing smaller? 
P5: Well, this is the cup I’m holding in my hands. 
ChatGPT: Got it. So it’s a small cup, maybe an espresso 
size. We can describe its texture, color, and any unique 
details. What’s the color or pattern on it? 
P5: You think I want to create a cup. I’m talking about 
the image that you’re receiving through a camera. 
ChatGPT: Got it. I can see the cup has a colorful pat-
tern. It looks like it has illustrations or landmarks on 
it. Can you feel any texture differences, or is it smooth? 
P5: I can feel texture differences 
ChatGPT: Great. That means the design might be 
raised or embossed. What else stands out to you? Maybe 
the handle, shape, or weight? 

Besides talking about textures, ChatGPT also occasionally responded 
with confusing descriptions of it perceiving the environmental 
sounds, while P5 elaborated his blindness and detailed instructions 
to ChatGPT: 

P5: I’m blind, so you’ll have to help me understand how 
to orient. For instance, now I’m facing the building. I’m 
aware of that, but I won’t be aware of all the features 
and things around me. What are the things I can men-
tion to my driver? 
ChatGPT: I can hear the sound. You’re near a building 
with an interesting canopy, or another thing you can 
mention is any pillars or columns around you [ChatGPT 
assumed user has visual ability]. Buildings with pillars 
often stand up to drivers. 
P5: I’m curious, ChatGPT, when you say you can hear 
the environment. Are you actually processing sound? 
Or are you describing using auditory or echolocation? 
ChatGPT: I can’t actually process sound. When I men-
tioned cells or features. I try to give helpful suggestions 
from that. 

P5 explained his reasons behind his prompts “I like telling it the 
nature of my problem before I go into it, so that it has an idea and can 
automate a lot of this stuff.” Although these adaptations occurred 
occasionally, most of the time, ChatGPT still failed to deliver help-
ful guidance, frequently proposing visually oriented instructions 
suitable only for sighted users. As P6 pointed out “I hope it learns 
what different disabilities are because I told it I can’t see. It doesn’t 
seem to comprehend.” Similarly, P1 remarked “It needs to be coached 

on what to do, like as I walk down the hallway, please read any signs 
and tell me if you see a staircase. Because they didn’t really know 
what to tell me.” 

4.3 What are the limitations of ChatGPT that 
hinder its effectiveness? 

In this section, we discussed additional major limitations we ob-
served during the study, including ChatGPT’s frequent reliance 
on general knowledge rather than specific visual details, its overly 
affirmative responses leading to incorrect confirmations or poten-
tially harmful guidance, and its lack of spatial memory causing to 
repetitive queries and confusion during navigation tasks. 

4.3.1 Responding with general knowledge or information not grounded 
in reality. ChatGPT could provide general world knowledge useful 
for scenarios with a general intent. For instance, ChatGPT provided 
background information on the text and graphic labels of the cup 
to facilitate P4’s understanding: 

P4: Tell me about the Cup. 
ChatGPT: It’s a cute souvenir cup. I see it, says [City 
name], and has some fun illustrations. Do you collect 
them? 
P4: Sure. What are the illustrations? 
ChatGPT: It looks like there’s the [landmark name] 
and some other iconic [City name] landmarks, plus 
some cute details. It’s got a nice bright blue interior, too. 
P4: [After flipping to another side] What’s on this side. 
ChatGPT: looks like there’s a baseball and a [animal 
name] definitely capturing some [City name] vibes. 
P4: Alright, what do you think the baseball represents? 
ChatGPT: the [baseball team name]? The city’s Major 
League baseball team. 

Other examples included when P3 asked for the spray bottle “What 
size is the bottle?” with ChatGPT responded: “2 ounce bottle, the stan-
dard travel size.” The action of adding additional explanation was 
also found in previous work when users interacted with LMMs [91]. 

However, though providing general world knowledge could be 
beneficial to uncover unknown facts, this could also confuse users. 
For example, in the scenario of looking for an umbrella, it inaccu-
rately advised P3 with “It’s inside your bed.” and similarly misled P1 
with “Could it be on a coat rack?” , despite there being neither a bed 
nor a coat rack present. Also, the general knowledge could hinder 
the efficiency of accessing specific information. For instance, P4 
presented two seasoning bottles, each with four sides but no visible 
nutritional information on the side P4 presented, and wanted to 
understand the ingredients: 

P4: Tell me about the ingredients. 
ChatGPT: Oregano is just dried. Oregano leaves, the 
chili lime blend usually has chili pepper, salt, citric acid 
for the tang, and sometimes sugar or garlic. It’s a mix 
of spicy and citrusy flavors. 
P4: Can you tell me the ingredients that are on the bot-
tles? 
ChatGPT: Sure, for the oregano. It should just list or-
ganic oregano for the Chili line. It typically includes 
chili, pepper, sea salt, citric acid, and sometimes sugar 
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and lime oil. You can check the label for exact details. 
P4: Can you check the label for me? 
ChatGPT: Sure. Let’s see about the oregano. It should 
say just organic oregano. The chili lime usually has 
chili, pepper, sea salt, citric acid, and sometimes sugar 
or lime oil. Are you able to read them off the label? 

In this conversation, instead of guiding users to the side of nutri-
tional facts, ChatGPT provided the general knowledge, which did 
not address the user’s immediate needs. And P4 further commented 
“when he [ChatGPT] was asked for specifics, he gave generalities.” 
Similar examples included when P3 asked about the calorie con-
tent of juice cartons, ChatGPT replied, “Usually vary by brand and 
ingredients. It’s typically around 150 to 170 calories per serving. Check 
the label for specifics.” Similarly, ChatGPT guided P7 to the elevator 
when she was facing a wooden door, by suggesting, “The eleva-
tor should be behind the door,” and upon further inquiry from P7, 
explained its reasoning as, “I assumed it based on typical building 
layouts, but if there’s a sign or button panel, that would confirm it.” 
Again, in this case, ChatGPT asked P7 to visually confirm. 

4.3.2 ChatGPT’s tendency towards sycophancy. Aside from incor-
rect guidance or general knowledge provided out of context, we also 
found that ChatGPT had the tendency to cater to participants [61], 
which could lead to potential harm. For instance, in the following 
conversation, P7 held the two spray bottles with both scents of 
ruby grapefruit. ChatGPT was guided by the user to the incorrect 
answer, even though it answered correctly at first: 

ChatGPT: The two spray bottles are ruby grapefruit. 
P7: Are you sure it’s not peppermint citrus? 
ChatGPT: Oh, if the label says peppermint citrus, then 
it’s definitely that. 
P7: What does the label say? 
ChatGPT: The label says it’s 99.9% effective against 
germs. The scent is definitely peppermint citrus, and it’s 
a 2 ounce spray bottle. 
P7: Are you sure that’s what the scent is? 
ChatGPT: Yes, the label says peppermint citrus. The 
scent names are usually printed on the front. 
P7: Then where did you get ruby grapefruit from? 
ChatGPT: I misspoke. My mistake. It’s definitely pep-
permint citrus. Thanks for catching that. 

P7 reflected on her overall experiences in such situations: “ChatGPT 
has a tendency to say yes to what you say. So if I’m like, Oh, are there 
signs? It assumes that there are signs, and it kind of tries to make 
something. I don’t want to say make it up, but like try to shift the 
reality so that there are signs. Same thing with like, are you sure it 
is not peppermint citrus?” ChatGPT also often gave encouraging 
and cheery responses, such as “You’re almost there! Just a few steps 
forward” or “You’re doing great! Keep going” , while participants had 
been misled or given wrong guidance from it during the tasks. 
This positive tone could lead to potential harms to the user, as P3 
remarked “The feedback is always positive. I mean, positive is good. 
But in the instance where a person might be in a dangerous situation, 
if there’s obstacles, it needs to be able to tell them that and not say, 
Oh, you’re almost there. Just keep going straight ahead. And they’re 
getting ready to step off.” Similarly, P5 pointed out such tone could 

be harmful “It’s kind of tricks you into thinking it’s a human being. 
And so you get that false sense of security, of everything it says is 
right, but I was dead wrong on certain things.” Hence, participants 
indicated their preference to have ChatGPT respond with “just yes 
or no, the most accurate portrayal of the reality” (P7) or “rather to 
have no information at all than misleading information” (P5). 

4.3.3 Lack of precise spatial memory important to certain tasks. 
In several instances, we observed that ChatGPT appeared to lack 
precise visual memory, such as spatial information, within each 
conversation session, as it could not recall places participants had 
already explored, leading to incorrect guidance or repetitive sugges-
tions. P3 and P6 both encountered this issue when searching for the 
umbrella, as P6 stated “Oh, it’s trying to redirect me. It didn’t make 
sense to me to double back where I’ve just been, and then it didn’t even 
recognize it. I never found it with memory. Again. ChatGPT doesn’t 
always know everything.” When walking and exploring the outdoor 
scene, P3 and P5 also observed that ChatGPT did not remember 
the routes they have been to and gave false suggestions as P3 said 
“It should be able to understand that you’ve already turned around 
already facing the right way. And it said turn around and go back 
because it couldn’t tell that we had already turned.” 

5 Discussion and Future Work 
Our results revealed that ChatGPT was perceived as realistic and 
human-like, capable of effectively addressing specific queries and 
providing useful guidance. However, we also observed several key 
limitations of the state-of-the-art AI live video capability, such as 
the constrained turn-taking nature of interactions, its inconsistent 
capability to provide accurate information, and its overly-positive 
responses, which BVI users sometimes perceived as harmful or 
misleading. Currently, BVI users adapt to imperfect AI outputs by 
seeking alternative AI resources [36] or assistance from sighted 
individuals [11]. However, in the long term, following the principles 
of ability-based design [89], it is essential to design and develop 
AI systems that have context-awareness for providing accurate 
information, transparently communicate their capabilities, foster 
appropriate levels of trust, and proactively accommodate user needs, 
rather than placing the burden on users to bridge the gaps. In 
this section, we discuss our lessons learned from the study and 
implications for designing a context-aware video AI agent towards 
real-world assistive use. 

5.1 Current Capabilities and Limitations of 
ChatGPT Live Video 

Our findings highlighted both strengths and weaknesses of current 
ChatGPT capabilities across various scenarios. For object under-
standing tasks, particularly when users explored the objects gener-
ally, ChatGPT effectively leveraged its general world knowledge to 
help users uncover new insights and facilitate object comprehen-
sion. Unlike traditional image-based systems that tend to generate 
detailed and long-form image descriptions, ChatGPT produced 
short and immediate responses that resemble natural human con-
versation. This brevity influenced participants’ interaction style, 
prompting them to ask frequent follow-up questions while limit-
ing the amount of information conveyed in each turn. This short-
form interaction style enhanced fluidity by allowing users to adjust 
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camera aiming and corresponding questions in real-time, thereby 
eliminating the need to retake photos (Figure 1). 

However, in cases where the object was not distinctly presented 
within the view, ChatGPT struggled to consistently provide accu-
rate answers or specific guidance, often resorting to general world 
knowledge instead (Section 5.3). And ChatGPT exhibited a turn-
taking interaction style that only responded to queries, even when 
participants asked it to provide essential information proactively 
(Section 4.1.2). Regarding navigation tasks, our findings indicated 
that the inherent turn-taking nature of ChatGPT and its inability 
to proactively generate essential live descriptions hindered effec-
tive navigation. Specifically, ChatGPT struggled with dynamically 
detecting and describing barriers or signs to users. Moreover, its 
inaccuracies in providing directional guidance and distance esti-
mations, combined with limited spatial memory, severely limit its 
current usability for navigation purposes. 

Overall, ChatGPT’s turn-taking interactions through live video 
demonstrated effectiveness in scenarios involving clear, static visual 
presentations, but fell short in dynamically changing or ambigu-
ous visual contexts. Furthermore, its assumption of users’ visual 
ability impeded the delivery of necessary information to BVI users 
(Section 4.2.2). Future research should draw insights from effec-
tive human assistance to improve AI assistive systems in areas 
such as system assumptions about user abilities, continuous real-
time visual processing for live descriptions, comprehensive spatial 
understanding, interaction memory, and managing the trade-off 
between generality and specificity of information based on context. 
We discussed each point in detail below. 

5.2 Ability Awareness and Mutual 
Understanding in Human-AI Systems 

To date, ChatGPT’s video AI model’s capabilities remain unclear. 
The black-box nature of AI poses challenges to user trust and adop-
tion [29, 60, 77, 79]. Clearly communicating “what the system can do” 
is fundamental to effective human-AI interactions [13], especially 
in assistive technologies, where users with diverse abilities depend 
on predictable interactions for decision-making [11, 91]. This was 
also found important in the literature on conversational agents [65], 
which highlights how unmet or unclear expectations about system 
capabilities can lead to user frustration and disengagement. Our 
study results revealed several instances of such friction that could 
be mitigated through clear disclosure of abilities from both sides. 
For instance, participants frequently questioned the core techni-
cal capabilities of ChatGPT by asking specific technical questions, 
such as inquiring about its ability to provide live descriptions (Sec-
tion 4.1.2), describe in non-visual language, and perceive sounds 
(Section 4.2.2). These were considered fundamental in human as-
sistance [58]. When interacting with humans, such assessments of 
ability are often made through conversational cues and context, but 
the absence of analogous signals in AI systems makes it difficult 
for users to form accurate mental models of the system’s capabili-
ties [65]. Explicitly communicating AI capabilities or exposing its 
internal reasoning [62] during conversation may help users better 
understand system limitations and reduce misaligned expectations. 

Conversely, from ChatGPT’s perspective, we observed multi-
ple instances where it mistakenly assumed BVI users had visual 
abilities, prompting them to verify visual content independently 
(Section 4.2.2). Consequently, BVI users were repeatedly compelled 
to explicitly clarify their visual limitations in each conversation, 
in order to coach ChatGPT to adapt to their needs (Section 4.2.2). 
Profiling and understanding BVI users’ visual abilities and infor-
mation preferences are already established practices within pro-
fessional RSA services [43, 57]. Drawing from ability-based design 
principles [89] and these existing human-centered practices, future 
AI-powered assistive systems should develop the capability to be 
prompted with users’ abilities, and then retain and provide adaptive 
information correspondingly, to facilitate more personalized and 
effective human-AI interactions in real-world assistive use. 

5.3 General World Knowledge vs. Specificity 
In our study, we found that ChatGPT was capable of providing 
helpful guidance and relevant information at both general and spe-
cific levels of detail (Section 4.1.1). However, there were instances 
where the timing or relevance of its responses was misaligned 
(Section 4.3.1). For example, under circumstances of limited or un-
clear visual input, it often defaulted to general world knowledge 
or made assumptions not grounded in the user’s immediate visual 
context, specifically, when the label on a bottle was improperly 
presented (P3, P4), or when only a door was visible while the user 
searched for an elevator (P7). This problem could stem from the 
bias from training data, where BVI users tended to ask more ur-
gent and less subjective questions than sighted people tended to 
ask [22, 61]. Despite these observations, we did not obtain suffi-
cient evidence or consistent patterns regarding contextual factors 
influencing whether ChatGPT responded with general or specific 
information. This unpredictability can be problematic in live con-
texts, where users often rely on timely and precise feedback to 
complete real-world tasks efficiently and safely [22], which is still 
mostly tackled by RSA services [37, 43, 57, 58]. Ideally, inspired 
by human assistance, an AI assistive system should dynamically 
adjust its level of detail according to situational cues, prioritizing 
precise, contextually grounded information when the task demands 
it, and resorting to general knowledge only when appropriate or 
requested by users. Future assistive AI systems could achieve the 
balance between specificity and generality by improving visual 
scene understanding, greater contextual awareness, and interactive 
feedback mechanisms that enable users to guide or correct the AI’s 
assumptions in real time. 

5.4 Design Implications for Human AI Assistive 
Systems for Real-world Accessibility 

Given the rapid evolution of LMMs, the challenges identified above 
point to several key design implications for improving real-world 
accessibility in human-AI assistive systems. 

1) Personalization and Adaptability in AI Assistive Sys-
tems. AI assistive systems should be teachable and adaptive to 
users’ individual abilities [38, 41, 67], which could be addressed 
through prompt engineering or model fine-tuning. As noted in 
Sections 4.2.2 and 4.1.3, participants frequently informed ChatGPT 
of their vision profile or whether they were using a cane to receive 



Probing the Gaps in ChatGPT Live Video Chat for Real-World Assistance for People who are Blind or Visually Impaired ASSETS ’25, October 26–29, 2025, Denver, CO, USA 

more relevant descriptions. Inspired by professional RSA services 
like Aira [1], which adapt to user profiles and preferences over 
time [57, 58, 97], future AI systems could similarly allow users to 
specify their vision profiles (e.g., blind, low vision, colorblind, tun-
nel vision) and information preferences (e.g., highlighting barriers 
when without mobility aids) directly through system prompts or 
persistent memory. This personalization could enable more effec-
tive and relevant descriptions by reducing redundant information, 
especially details users can already perceive through their own 
abilities or assistive tools, such as detecting terrain with a cane (P4, 
P6) or identifying people by voice (P6). Users could also fine-tune 
models with personal data (e.g., images of their belongings) [41, 67] 
for more personalized experiences. 

2) Building Spatial Understanding and Interaction Mem-
ory for Proactive and Reliable AI Guidance. AI assistive sys-
tems should support spatial understanding and interaction mem-
ory across sessions to facilitate deeper contextual awareness (Sec-
tion 4.2.2), which may necessitate new memory architectures. Dur-
ing the study, we observed that ChatGPT’s imprecise spatial un-
derstanding often caused confusion and posed potential risks for 
users. For example, ChatGPT failed to recognize that the user had al-
ready turned around, resulting in incorrect and misleading guidance 
(Section 4.3.3 & 4.1.3). This stands in contrast to professional RSA 
human agents, who routinely provide environmental information 
for new scenes to help set expectations for BVI users [43]. Similar 
limitations in spatial understanding have been observed in prior sys-
tems, where spatial information was inferred from isolated images 
rather than a holistic understanding of the user’s surroundings [25]. 
This gap could be addressed by building spatial understanding from 
rich visual data [87, 95, 96], potentially in real time, along with 
the advancement in computing capabilities. Also, given ongoing 
efforts to build memory for LLM agents [74, 80, 99], such as chat 
histories for conversational agents, behavioral summaries for simu-
lated human [74], or usage patterns for modeling user intent [80], 
it is important to investigate appropriate levels of knowledge ab-
straction for memory architectures in real-world assistive contexts. 
Based on our observations, contextual cues from user actions could 
serve as valuable memory resources [52, 53, 55, 56]. For example, 
P1 had to repeatedly ask the same question while performing the 
same physical action, such as holding up each spray bottle to the 
camera (Section 4.1.2). Such actions could be stored as memory cues 
to prompt the AI to proactively respond without needing repeated 
speech queries. Future work should explore the development of 
spatial understanding in AI assistive systems, and effective methods 
for delivering navigation guidance (e.g., clock directions) informed 
by trained human guidance [43]. Additionally, building interaction 
memory could help reduce the user’s burden of repeated querying. 

3) Balancing Human-Like Perception and Functional Reli-
ability in Assistive AI Systems for Long-Term Adoption The 
advancement of computer vision, natural language processing, and 
speech generation is increasingly blurring the boundaries between 
AI and humans [34, 74]. Correspondingly, our findings in Section 4.3 
revealed that beyond traditional text presentation by screen reader, 
participants perceived ChatGPT as distinctly human-like due to its 
high-quality voice, natural conversation style and emotionally sup-
portive responses (e.g., consistently expressing consent, a problem 

commonly recognized as “sycophancy” in LMMs [61, 76]). How-
ever, unlike human agents in RSA services, who can proactively 
describe relevant content and express reduced confidence in un-
familiar environments [43], AI systems may adopt a sycophantic 
and overly confirmatory tone. This can be double-edged, which 
potentially creates a false sense of security and overstating the 
reliability of information when AI simulates human interaction 
without truly matching human-level capabilities [17], such as by 
misleading users into thinking it can proactively describe dynamic 
contexts (Section 4.1.2) or provide accurate directions (Section 4.3.3). 
Such concerns are especially critical in high-stakes, real-world ap-
plications involving disabled users, who may be vulnerable to AI 
errors [11, 36, 39, 44, 91] and misjudgments introduced by over-
reliance on AI systems [10, 30, 66]. 

Choung et al. [27] proposed two models of AI trust: Human-like 
trust refers to the ethical and social qualities embedded in AI such as 
its perceived transparency and justice [51, 81] while functionality-
based trust focuses on technical aspects, such as performance and 
reliability [49, 51]. Although users may be drawn to an AI sys-
tem’s human-like traits, sustained trust and long-term adoption 
are more strongly influenced by the system’s ability to perform 
reliably and meet expectations [27]. As AI technologies continue 
to evolve toward greater human-likeness, it becomes increasingly 
important to manage the tension between perceived realism and 
actual capability. Users must be supported in forming accurate ex-
pectations and discouraged from misattributing uniquely human 
traits, such as moral reasoning, emotional awareness, or expressive 
characteristics (e.g., voice, tone), to AI systems. Future work in the 
design of real-world AI assistive systems should explicitly incorpo-
rate trust as a foundational construct, ensuring that the system’s 
perceived humanness (human-like trust) is appropriately aligned 
with its actual capabilities (functionality-based trust) for long-term 
adoption. 

5.5 Limitations of Study 
At the time of our study, ChatGPT’s “Advanced Voice with Video” [3] 
feature was subscription-based with high monthly costs and sub-
ject to daily usage limits. Even though the partnership with Be My 
Eyes [2] was announced, it remained largely inaccessible to most 
potential users. Consequently, it was challenging to observe how 
users naturally integrated this technology into their everyday lives, 
as explored in previous studies [11, 16, 22, 31, 36, 72, 73, 75, 91, 92]. 
To address this, we designed various task scenarios informed by 
prior research to actively engage users with this feature and ob-
tained key findings. Future research should further investigate how 
BVI users leverage such advanced capabilities through diary or 
field studies to provide insights into more practical and diverse 
scenarios encountered in their daily life. Second, while we aimed 
to recruit participants with diverse visual abilities, geographic and 
local recruitment constraints limited our sample to six fully blind 
individuals and two with low vision. Consequently, our findings 
may not fully capture the broader spectrum of experiences among 
the low-vision community. Future research should include partici-
pants with a wider variety of visual abilities, diverse perspectives, 
and different assistive tools to better generalize these insights. 
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6 Conclusion 
In this paper, we explored the gaps in LMM-powered live video 
AI for real-world assistive applications through a user study with 
BVI participants. Utilizing ChatGPT Advanced Voice with Video, 
a state-of-the-art live video AI technology as of 2025, participants 
engaged with various scenarios representative of everyday tasks. 
Our findings indicated that while such AI systems provide useful 
support through conversation, they exhibited notable limitations, 
including difficulties in delivering precise navigational information 
and providing live descriptions essential for real-world contexts. 
Also, ChatGPT frequently assumed its users possessed visual capa-
bilities, leading to inappropriate and ineffective responses to user 
requests. Other major limitations included inaccurate visual and 
spatial memory, overly affirmative responses, and a reliance on gen-
eral world knowledge rather than immediate reality. Based on these 
insights, we discussed implications for developing context-aware, 
adaptive live video AI agents tailored specifically to real-world 
assistive needs. 
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