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Figure 1: Although deep learning provides high performance in some settings, the constraint of a one-time human input
combined with counterintuitive gaps in knowledge can lead to poor performance in interaction scenarios. For example: if a
robot asked to retrieve a book by its title (please get The Future of Ideas) is forced to infer it will identify the wrong object, but if
it is allowed to defer—soliciting additional information such as please get the top book from the human—it will behave correctly.
Images and expressions from RefCOCO [39], predictions are from UNITER [18].

ABSTRACT
Although deep learning holds the promise of novel and impactful
interfaces, realizing such promise in practice remains a challenge:
since dataset-driven deep-learned models assume a one-time hu-
man input, there is no recourse when they do not understand the
input provided by the user. Works that address this via deferred
inference—soliciting additional human inputwhen uncertain—show
meaningful improvement, but ignore key aspects of how users and
models interact. In this work, we focus on the role of users in de-
ferred inference and argue that the deferral criteria should be a
function of the user and model as a team, not simply the model
itself. In support of this, we introduce a novel mathematical for-
mulation, validate it via an experiment analyzing the interactions
of 25 individuals with a deep learning-based visiolinguistic model,
and identify user-specific dependencies that are under-explored in
prior work. We conclude by demonstrating two human-centered
procedures for setting deferral criteria that are simple to implement,
applicable to a wide variety of tasks, and perform equal to or better
than equivalent procedures that use much larger datasets.
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1 INTRODUCTION
Deep learning holds the promise of novel interfaces, many of which
could have significant practical impact: visual question answering
models [1] are being studied as a method to help visually impaired
individuals understand the visual world [7, 8, 31], referring expres-
sion comprehension [56] is a critical technology for robots in, for
example, an elder-care setting [13, 40, 59, 84], vision-and-dialog
navigation [78] will simplify control of search and rescue vehi-
cles [5, 10], among others [53, 66, 83]. Despite these human-centered
motivations, the formulation of supervised deep learning—a model
is given an input and rewarded for a correct output—means that
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there is no recourse when the human provides information that is
semantically ambiguous [6, 30] or mismatched with the features
learned by the model [77].

For illustration, consider the case shown in Figure 1, where the
goal is for the support robot to retrieve a speci�c book from the
desk. The initial query refers to the book by its title,The Future of
Ideas. Although the robot is unable to correctly resolve the object
using this query, standard deep learning formulations would force
the robot toinfer, leading to retrieval of the laptop instead of the
target book. Because of the latency of this process�the human must
wait for the robot to retrieve the desired object�it is impractical
to evaluate the received object and reformulate the query if the
model's output is incorrect as is common practice in search or
conversational virtual assistants [71]. Other settings have similar
limitations: vision-and-dialog navigation [78] also has signi�cant
latency after inference, while visual question answering for the
visually impaired [31] does not have a simple method for con�rming
the model's output.

Recognizing this, some works propose methods fordeferred in-
ference: when the model is uncertain, it can insteaddefer (Fig-
ure 1-bottom) and request additional information in a way that
does not require the human to perform the task in place of the
AI agent. Approaches to deferred inference include generating
follow-up questions [57, 62, 74], using natural language to revise
plans [73], and asking for a rephrase [34, 47]. Although such works
have demonstrated that deferred inference can be used to reduce
error, they often downplay the role of the individual with whom
the AI is interacting: Lemmeret al.[47] provide a comprehensive
evaluation of deferred inference in aggregate but do not consider
deferral criteria�the exact conditions that result in deferral�while
other works [34, 57, 62, 74] select their deferral criteria based on
pre-de�ned properties of the model's output (e.g.,margin [34, 57])
without considering their e�ect on properties such as error or de-
ferral rate, or qualities of an individual user. In this work, we focus
on how the choice of deferral criteria must explicitly consider the
interaction between an individual and a deep-learned model.

We begin by describing a novel formulation for setting deferral
criteria that explicitly considers the individual, the model, and the
goals of deferred inference. We validate this formulation via a study
with 25 participants on a language-based image cropping task�the
same technology underlying the example in Figure 1. Speci�cally,
we identi�ed four major �ndings: (i) there exists a signi�cant rela-
tionship between user satisfaction and both error and deferral rate,
motivating deliberate setting of deferral criteria;(ii) the distribution
of output con�dences is dependent on the individual, reinforcing
the need for user-speci�c deferral criteria;(iii) thedeferral response�
information provided by the user after deferral�is less meaningful
to the model than the initial query, demonstrating a shortcoming
of reformulation approaches; and(iv) the relationship between the
model's con�dence and error is most likely to be independent of the
user, shortening the calibration process when the goal is to target
an error. We then demonstrate two methods for setting deferral
criteria based on individual users, and �nd that they perform as
well or better than using large datasets, despite having two orders
of magnitude fewer calibration examples.

2 RELATED WORK
2.1 User Interaction with Deep Learned Models
Many applications use a human input to de�ne the task or provide
additional information to improve performance: visual question
answering [1] requires a human to ask a question and provide an
image, keypoint-conditioned viewpoint estimation [76] allows a hu-
man to provide image semantics, voice-based video navigation [17]
allows a human to provide verbal cues to navigate a video, among
others [53, 56, 66, 78, 83]. Because the structure of deep neural
networks�a single input produces a single output�solutions to
such problems either evaluate error via independent inferences
on a dataset [1, 31, 56] or consider team performance from per-
spectives such as trust and explainability [4, 14, 49, 67, 72], intro-
ducing novel interfaces [12, 37, 44], performing satisfaction sur-
veys [21, 52, 53, 86], or evaluating how users respond in a failure
case [33, 71].

Other works that explore humans teamed with deep-learned
models ignore the qualities of the model and use simplifying as-
sumptions such as Wizard-of-Oz studies [69, 88], simpli�ed compu-
tational models [2, 16, 17], or only identifying inputs with incorrect
or insu�cient semantics [6, 54, 64]. While these areas of research
are meaningful, the often counter-intuitive nature of deep learn-
ing models [70, 75] means that human input being semantically
correct is neither necessary nor su�cient to produce the correct
answer [46, 48]. In this work, we compensate for these shortcom-
ings by evaluating human interaction with the deep-learned model
in the loop.

2.2 Conditional Inference
It is intuitive for a model�human-in-the-loop or not�to only make
a �nal decision when it is con�dent. In some cases this is done
by using the AI to assist decision making by providing relevant
information, such as proposed outputs [38, 80], or a prediction
with an explanation or con�dence value [4, 60, 87]. In other cases,
framed asselective prediction[19, 20, 23, 27, 28, 43, 45, 81], the AI
sends low-con�dence inferences to a human�a �second opinion�
in medical terms [9, 41, 65]. While these approaches are useful in
many cases, they require a human to perform the inference itself
when the model is not con�dent, which is impractical in important
use cases such as visual question answering for accessibility [31]
or giving verbal commands to a household robot [84]. Because of
this, it is important to consider methods for conditional inference
that do not require the human to operate in the output space (e.g.,
fetching the desired object or answering visual sub-questions).

A handful of works, sometimes grouped under the umbrella of
deferred inference[47] do this by asserting that the initial and sub-
sequent human inputs are made in the same space. Such works
generally take intuitive approaches such as generating complemen-
tary text queries [57, 62, 74, 79], asking for a rephrase [34, 47], or
allowing the human to identify and resolve local minima in tasks
with a long time horizon (e.g.,adding instructions to a pick-and-
place task) [73]). While such approaches are intuitive, they have
two shortcomings: �rst, they often require novel approaches to
produce meaningful follow-up questions. Due to the opaque nature
of deep neural networks, this will often require assumptions on the
task (e.g.,iterating through identi�ed objects [57]) or datasets that
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Figure 2: Deferred inference can be abstracted into three components: the task model uses human information and �xed inputs
to predict a target value, the aggregation function combines multiple outputs from the task model, and the deferral function
determines whether to perform the inference or defer based on the deferral criteria (is B¡ C?) and whether the deferral depth
constraint has been reached. The application of Referring Expression Comprehension [56] is used for illustration.

lead to trivial follow-up questions (e.g.,askingis there a tined utensil
to the left of the pizza?as a follow-up question toon which side of
the plate is the fork?[79]). Second, user studies in such works do not
typically analyze the interaction between individual users and the
deep-learned model, instead setting deferral criteria a-priori and
reporting the change in success rate over the deferral-free condition.
To address the former shortcoming, we use the approach of Lemmer
& Corso [47], while for the latter we perform a user-centered study
with the explicit goal of setting deferral criteria.

3 BACKGROUND AND RESEARCH
QUESTIONS

Throughout this work, we seek a method for setting deferral criteria
that meaningfully improves the user's satisfaction with the inter-
action, which we show is dependent on the error and the deferral
rate. Such a method requires not only an understanding of how
the model responds to a human input, but also how the input�and
the model's response to it�varies from user to user. We begin by
discussing the framework and terminology of deferred inference
that we use, then provide a theoretical formulation for calculating
both the deferral rate and the overall error. These formulations
provide important guidance to the questions that must be answered
to appropriately set deferral criteria.

3.1 Deferred Inference
Deferred inference [47] improves the performance of a human-AI
team by allowing the AI to defer�request additional information
from the human�when some set of conditions are met. Throughout
this work, we formulate deferred inference as the interaction be-
tween the three components shown in Figure 2. The �rst component
is thetask model, 5¹G• �=º, which uses a �xed input (e.g.,an image),
G, and a human-provided input (e.g.,a text query),� =, to produce a
distribution across outputs,?¹~jG• �=º. There is no hard restriction
on what this distribution is: it could be, for example, a softmax
across a set of answers in visual [1] or text [66] question answering,
a distribution across locations in visual object tracking [22], or a

variety of other task-dependent outputs. The second component is
the Aggregation Function, � ¹G• �1• ”””• �= j5º, which produces a new
belief,?¹~jG• �1• ”””• �=º, by combining multiple outputs from the
task model. This may be done by any number of methods, such
as direct replacement [48], �nding the mean distribution [34], or
performing a belief update [47]. Throughout this work, we use
the last method as our aggregation function and allow the model
to defer by asking the user to try again. This approach has the
bene�t of allowing us to rapidly implement deferred inference on
new architectures without needing to develop corresponding text
generation architectures [57] or relevant datasets [79].

The output of the aggregation function is passed to thedeferral
function, 6¹G• �1• ”””• �=º 2 f0•1g, which determines whether or not
inference should be deferred based on whether somedeferral criteria
has been met. Setting the deferral criteria is the main motivation of
this work: it is typically a threshold that is applied to a continuous
deferral score, such as entropy [47] or margin [34, 57], alongside a
Deferral Depth Constraint(DDC) that limits the number of times the
AI is allowed to defer. Such criteria would be set to target an error
or Deferral Rate(DR), the average number of deferrals per task.
Although previous works minimize the role of the deferral criteria
by choosing to evaluate at all DRs and DDCs [47,48] or ignoring the
user burden [34, 57, 62, 73, 74, 79], we �nd that the deferral criteria
must be considered, since user satisfaction is directly related to
both error and DR.

3.2 Theory on Thresholds
When we set deferral criteria, we seek to balance error and user
burden. Previous work [34, 57] has downplayed that tradeo� by
making the assumption that it is su�cient to set deferral criteria
based on characteristics of the task model. In this section, we show
that it is impossible to set a deferral criteria that targets an error or
DR without explicitly considering the user for whom that criteria
is being set. Throughout this work, we set the DDC to one across
all evaluations.
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Expected Deferral Rate.We begin by showing how to calculate
the expected DR,E¹DRjC•Dº. A deferral occurs if we have a user,
D, that user produces a score,B1, and that score is greater than the
threshold,C. This gives us the formula:

E¹DRjC•Dº =
¹

B1

?¹B1 ¡ C•B1•Dº3B1” (1)

If we expand by chain rule, assume the user is given (?¹Dº = 1) and
represent?¹B1 ¡ Cº with an indicator function, we get:

E¹DRjC•Dº =
¹

B1

1¹B1 ¡ Cº?¹B1jDº3B1” (2)

This demonstrates clearly that while previous work often sets de-
ferral criteria in a user-agnostic way [34, 57], we cannot target a
deferral rate in a user-agnostic manner if?¹B1º is dependent on the
user.This motivates the research question:do deferral scores di�er
meaningfully between users?

Probability of Error.To �nd the probability of error ?¹4jC•Dº, we
evaluate separately the contribution to error when a deferral does
and doesn't occur. When no deferral occurs, we are looking for
the condition where the user,D, produces a score,B1, that is less
than or equal to the threshold,C, and there is an error,4. Written
mathematically:

?¹4jC•D•B1 � Cº =
¹

B1

?¹4•B1•B1 � C•Dº3B1” (3)

The formulation is similar if deferral has occurred, with the addition
of the deferral score after the second human input:

?¹4jC•D•B1 ¡ Cº =
¹

B2

¹

B1

?¹4•B2•B1•B1 ¡ C•Dº3B13B2” (4)

Since these two conditions are mutually exclusive (B1 is never si-
multaneously greater than and less thanC), we can simply sum
these two components. If we invoke the same assumptions as in
Equation 2, we get:

?¹4jC•Dº =
¹

B2

¹

B1

¹?¹4jB2•Dº?¹B2jB1•Dº?¹B1jDº1¹B1 ¡ Cº

¸ ?¹4jB1•Dº?¹B1jDº1¹B1 � Cºº3B13B2”

(5)

As when targeting a deferral rate, it is critical to consider the
relationship between the deferral score,B1, and the user. Addition-
ally, we note two other questions that should be evaluated: �rst, if
the task model's responses to the �rst and second human inputs
are identical, we can �nd?¹B2jB1•Dº using only initial responses
(?¹B1jDº), signi�cantly reducing calibration time. In other words,
we askhow do users respond when an inference is deferred?Second,
although works in calibration [29, 51, 58, 82] show a relationship
between probability of error and some deferral scores, such works
have never considered the role of individual users. If the relation-
ship between probability of error and deferral score is dependent on
the individual, we must consider this when �nding?¹4jB1•Dº and
?¹4jB2•Dº, instead of simply using large datasets. In other words,
we askdoes knowing the user provide additional information about
the mapping between probability of error and deferral score?

Explicitly, this leads us to �ve research questions:

RQ1 How is user satisfaction related to error and deferral rate?It
is only necessary to pursue a speci�c error or deferral rate�
which requires user-speci�c deferral criteria�if these factors
have an e�ect on overall satisfaction.

RQ2 What are the time dependencies of error,4, and deferral score,
B? The lack of a time variable in the above formulations
implicitly assumes static distributions. However, previous
work [15, 68], as well as common sense assert that the users
require some time to develop their mental model. Thresholds
should only be set after this mental model has converged.

RQ3 Do deferral scores di�er meaningfully between users?By not
providing user identities, dataset-focused work in deferred
inference [34, 47] implicitly assumes that users are inter-
changeable, while works that evaluate via human experi-
ments [57, 74] set deferral criteria a-priori and do not con-
sider qualities of the individual. If the deferral score is dif-
ferent between users, the deferral criteria will need to be
calibrated for individuals.

RQ4 How do users respond when an inference has been deferred?
Previous work using our chosen deferral formulation has
either accepted deferral responses as is�not comparing qual-
ities of the deferral response to the initial query�or broken
time dependency entirely through the use of datasets [34,47].
If the deferral response is signi�cantly di�erent from the
initial response, this dependency should be considered in
future work. If not, dataset-like approaches could be used
to set deferral criteria for higher deferral depth constraints
without collecting many deferral responses for each user.

RQ5 Does knowing the user provide additional information about
the mapping between probability of error and deferral score?
Works in model calibration [29, 51, 58, 82] demonstrate a
mapping between deferral scores and probability of error,
but do not explore if such mapping is consistent across users.
If this mapping is not user-dependent, we can construct
both ?¹4jB1•Dº and?¹4jB2•Dº prior to interaction with the
individual based on large non-user-speci�c datasets. This
would greatly reduce the time required to set deferral criteria.

4 EXPERIMENTAL SETUP
4.1 Motivating Application
We used referring expression comprehension [56] as our motivat-
ing application. In referring expression comprehension (shown in
Figures 1 and 2), the user provides a text query that identi�es a
speci�c object in an image. The task model accepts both the image
and the text query and attempts to identify the object described in
the text, either through a bounding box or per-pixel segmentation.
We presented this application to our participants as a language-
based image cropping task, which was chosen for two reasons: �rst,
cropping is a commonly performed and easily explainable task,
meaning little additional instruction was necessary. Second, unlike
other embodiments of referring expression comprehension�such
as pick-and-place [57]�cropping can be credibly applied to exist-
ing datasets (i.e.,MSCOCO [50]) and therefore does not require
additional model training or dataset procurement.
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Figure 3: The four screens in our interface. The user begins in the Initial Screen and is tasked with cropping the object in the
green box. After entering text on the initial screen, the AI may choose to defer or infer. If the AI chooses to defer, the user is
asked to provide another input on the Deferred Inferencescreen. After inference, the user is presented with either the Correct
Inference screen or the Incorrect Inference screen. In both cases, the removed region is darkened. Indicated regions shown below
images. The color of region (D) depends on whether the inference was correct. Inputs for correct and incorrect inferences were
three-seater sofaand far right sofa , which were provided by participants to identify the cropped objects.

As our dataset, we used a subset of target objects from the Ref-
COCO dataset [39]. This subset was chosen to mitigate two issues
observed in our initial tests: �rst, there were many cases where
the target object was visually ambiguous due to a high degree of
overlap with other objects in the image�for example, a person
standing in front of another. Second, similar to �ndings on the VQA
application [11], there were numerous instances where the model
largely ignored the text. Since our focus is on the e�ect of human
input given a clear intent, we selected a subset of RefCOCO that
meets the following criteria:

� The object does not have an Intersection-over-Union (IoU)
of greater than 0.5 with any other object in the image.

� Of the referring expressions in the RefCOCO dataset [39]
for this object, greater than 32% but less than 68% result in a
correct answer.

We additionally iterated through the remaining examples to
manually remove images that do not clearly indicate a single object
or may be o�ensive, resulting in a total of 1,107 potential crop

targets across 842 images. During evaluation, crop targets were
randomly picked and an individual participant never saw the same
image more than once.

4.2 Procedure
Participants.We conducted this experiment with 28 adults (older

than 18). All participants were required to have normal or corrected-
to-normal full-color vision and described themselves as pro�cient
in English. Participants were solicited via local mailing lists and
located in the United States at the time of the study. Participants
were asked to use a computer with a mouse and keyboard, and were
supervised virtually during the experiment. Three participants were
identi�ed as malicious or inattentive actors (error greater than three
standard deviations above the mean) and their data was excluded
from further analysis.

Of the remaining 25 participants, 12 identi�ed as male, 12 iden-
ti�ed as female, and 1 preferred not to state. Mean age was 25.2
� 2.88, technical competence was reported as 5.76� 1.24 out of 7,


	Abstract
	1 Introduction
	2 Related Work
	2.1 User Interaction with Deep Learned Models
	2.2 Conditional Inference

	3 Background and Research Questions
	3.1 Deferred Inference
	3.2 Theory on Thresholds

	4 Experimental Setup
	4.1 Motivating Application
	4.2 Procedure
	4.3 Technical Details

	5 Results
	6 Setting Deferral Criteria
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

