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Most smartphones today have a rich set of sensors that could be used to infer input (e.g., accelerometer,
gyroscope, microphone); however, the primary mode of interaction is still limited to the front-facing touch-
screen and several physical buttons on the case. To investigate the potential opportunities for interactions
supported by built-in sensors, we present the implementation and evaluation of BeyondTouch, a family of
interactions to extend and enrich the input experience of a smartphone. Using only existing sensing capa-
bilities on a commodity smartphone, we offer the user a wide variety of additional inputs on the case and
the surface adjacent to the smartphone. Although most of these interactions are implemented with machine
learning methods, compact and robust rule-based detection methods can also be applied for recognizing some
interactions by analyzing physical characteristics of tapping events on the phone. This article is an extended
version of Zhang et al. [2015], which solely covered gestures implemented by machine learning methods. We
extended our previous work by adding gestures implemented with rule-based methods, which works well
with different users across devices without collecting any training data. We outline the implementation of
both machine learning and rule-based methods for these interaction techniques and demonstrate empirical
evidence of their effectiveness and usability. We also discuss the practicality of BeyondTouch for a variety of
application scenarios and compare the two different implementation methods.
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1. INTRODUCTION

Currently, the primary mode of interaction with a smartphone is limited to the front-
facing touchscreen and a small number of physical buttons along the sides. However,
there are various scenarios when it is not convenient to touch the screen or the buttons,
such as when the phone is inside a pocket, when it is on a table and the user’s hands are
dirty or wet, when touching the screen occludes the display, or when the user is holding
the phone in one hand while the other hand is occupied with another task. To address
these limitations, we implemented and evaluated a family of interaction techniques,
called BeyondTouch, that allow a user to perform additional inputs in-pocket, one-
handed, two-handed and on-table, extending the input language of a smartphone in
several interesting ways (Figure 1).

1.1. Contributions and Overview

Although it is possible to accommodate many of these interaction scenarios by adding
capabilities to the smartphone through external sensors (e.g., a capacitive touchscreen
on the back of the phone [Hiraoka et al. 2003; Saponas et al. 2011]), it is also possible
to augment the input language of a commodity smartphone through proper leverage
of its existing sensing platform. Current smartphones are equipped with an increasing
number of sensors, specifically accelerometers, gyroscopes, and microphones, all of
which can be exploited to support a wider variety of software-detected input events
without the need for additional hardware.

Previous work has suggested the possibility of sensing a small set of input events.
Researchers have already demonstrated the importance of in-pocket interaction
with customized hardware [Hudson et al. 2010; Saponas et al. 2011; Zhang et al.
2013], the possibility of detecting tap events using inertial sensors [Saponas et al.
2011; Zhang 2013], and using advanced machine learning techniques to infer user
input [McGrath and Li 2014; Xu et al. 2012; Zhang et al. 2015]. BeyondTouch is
distinguished by the breadth of input events enabled, the discussions on practical
issues when applying machine learning on mobile interactions (e.g., personalization
on models), the comparison between rule-based and machine learning methods, and
other challenges deploying them in real applications.

This article is an extended version of Zhang et al. [2015], in which we discussed the
opportunities and challenges of applying the machine learning technique on recogniz-
ing gestures on a smartphone with only built-in sensors. Beyond our previous work, this
article also describes the design, evaluation, and gestures implemented with impact
and robust rule-based methods.

BeyondTouch (see Figure 1) extends the input language of a smartphone by offering
the following:

• On-case interactions (one-handed, two-handed) to avoid occluding the limited screen
area with the fingers

• Indirect interactions (on-table, in-pocket) by directing interactions to where the
phone is placed (e.g., a table, a pocket).

We provide a review of related work next. We then describe the technical approaches
behind the implementation of BeyondTouch, the machine learning and rule-based ap-
proaches to recognize the various input events. We provide an empirical evaluation of
the performance of BeyondTouch and discuss the implications of these results for prac-
tical use. Our results suggest that rule-based methods can provide improved accuracies
while detecting corner taps over machine learning methods. We also show that with
a little bit of personalized training data, the performance for some machine learning
interactions can be improved.
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Fig. 1. BeyondTouch interaction techniques.

2. RELATED WORK

Now we review past work on using sensors to enable novel interaction techniques and
position our contribution of providing a broad range of interactions for a smartphone
without having to add any new sensing capabilities to the device.

Some of the earliest demonstrations of broadening interactions with mobile devices
were presented by Hinckley et al. [2000], who instrumented a PDA with a variety
of extra sensing capabilities to demonstrate a wide variety of interactions that could
augment the user experience. This work inspired much of the related research that
we have reviewed. Although most of the related work has taken a similar approach
of adding sensors to the device to demonstrate interactions that can be supported,
contemporary smartphone platforms include increasingly sophisticated sensors, and
there is an opportunity to produce many discrete interactions without adding sensors.

2.1. On-Case Interactions

One of the main problems with touchscreens is that users’ fingers occlude the screen.
Several researchers have experimented with shifting the interaction away from the
touchscreen to the side and back of devices to eliminate occlusion or increase efficiency
and accessibility of the device. This can be accomplished by adding additional hardware,
such as a keypad [Hiraoka et al. 2003; Li et al. 2008] or a touchpad [Baudisch and Chu
2009; Schwesig et al. 2004; Scott et al. 2010; Sugimoto and Hiroki 2006; Wobbrock et al.
2003], or through computer vision [Schmieder et al. 2013; Wigdor et al. 2007].

Other research has explored potential gestures supported by built-in sensing capabil-
ities on the phones. Hinckley and Song explored techniques using only inertial sensors
and touch input for handheld devices that leverage the multimodal combination of
touch and motion, providing touch-enhanced motion and motion-enhanced touch ges-
tures as well as the detection of tap events [Hinckley and Song 2011]. Tap events have
been further investigated by recognizing side taps [McGrath and Li 2014], detecting
taps on the back case of a phone using the microphone as a sensor relying on off-device
computation to process the input [Robinson et al. 2011], or distinguishing between a
single gentle or firm tap on the case [Heo and Lee 2011]. Besides using tap gestures
while holding the phone, there are often situations in which a simple tap directed to
some location on the device is an easy and often preferred eyes-free way to interact
[Ronkainen et al. 2007], such as interacting with the phone while it is inside a pocket.
Taking the phone out for interactions demands a high level of attention, both cogni-
tively and visually, and is often socially disruptive. Whack Gestures explored quick
access to a device in a pocket through striking its case forcefully with the palm or heel
of the hand [Hudson et al. 2010]. Goel et al. demonstrated the possibility of inferring
hand postures while holding the phone using only built-in sensors but requiring a
somewhat undesirable constant vibration source [Goel et al. 2012].

2.2. Off-the-Phone Interaction

In some contexts, it is desirable to interact with the phone without directly touching it.
The space around the phone can be used to interact with the phone. Airlink exploits the
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Doppler effect to detect the gestures above the phone [Chen et al. 2014]. Others have ex-
plored off-the-phone interactions while a phone is placed on a flat surface (e.g., a table),
requiring customized pickups attached on the surface to capture the acoustic signals
on the surface, such as a modified stethoscope [Harrison and Hudson 2008] or contact
piezoelectric sensors [Paradiso et al. 2002]. Goel et al. used both the customized sensors
on the surface as well as the phone sensors (e.g., inertial sensors) to support a wider set
of around-phone gestures [Goel et al. 2014]. What is missing from the literature is an
exploration of the kind of off-the-phone gestures that can be detected without using any
additional hardware other than the built-in sensors. Although previous work has ex-
plored recognizing gestures by differentiating sounds generated by gestures [Harrison
and Hudson 2008], the on-table interaction in BeyondTouch can detect both sliding
and tapping gestures with only built-in sensors. Specifically, we introduce the use of
dual microphones available in most modern smartphones for recognizing gestures.

2.3. Snooping Users’ Input on Smartphones

Interestingly, several researchers outside the HCI community have explored nefarious
uses of sensing mobile device interaction, uncovering information security risks af-
forded by easy access to smartphone sensors such as the accelerometer to detect users’
input on the touchscreen [Cai and Chen 2011; Miluzzo et al. 2012; Owusu et al. 2012;
Xu et al. 2012]. However, most of these techniques rely on offline inference. Thus, how
they will work for real-time interaction tasks is unclear.

3. MOTIVATION AND APPLICATIONS

BeyondTouch was motivated by many common smartphone usage scenarios, where the
touchscreen or on-case buttons limit convenient interactions. To address these limi-
tations, we implemented four classes of interaction scenarios: in-pocket, one-handed,
two-handed, and on-table.

3.1. In-Pocket

Many people place their phones in a pocket, bag, or armband, thus requiring extra
effort to retrieve the phone to perform otherwise simple interactions. We implemented
in-pocket interaction, which allows the user to tap on any of the four corners of the
phone’s case while the device is inside a pocket or on an armband (Figure 1(a)). The
four distinct corners are easily reached without removing the phone or looking at
the screen, and tapping is convenient to perform while the user is in motion. This
in-pocket interaction is inherently eyes-free, minimizing the visual distraction to the
user and increasing accessibility for users with visual impairments.

With the in-pocket interaction capability, we simplify responding to an incoming
phone call either by dismissing it or sending one of several prepared text responses
(e.g., “On my way,” “Busy, call later”) when the phone is in a pocket. Another example is
interacting with a music app during exercise, with the phone attached to an armband.
In a music player application, the back corners of the case could be mapped to volume
up, volume down, track forward, and previous track.

3.2. One-Handed

When the user is interacting with the phone with a single hand, it is not easy to move
the thumb across the entire touchscreen area, especially as screen sizes increase. In
addition, the other hand may be occupied doing something else. BeyondTouch allows
the user to tap on the side of the phone with the thumb, and to tap or slide on the back
of the phone with the index finger (Figure 1(c)).

The one-handed tapping interactions can be used for applications such as browsing
through images and Web pages. They can also be used for camera functions, such as
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taking selfies, zooming in and out, and so forth. Other applications include access-
ing functions with coarse input gestures. For example, the user can simply turn the
flashlight on and off by tapping on the back of the phone. The one-handed sliding in-
teractions are naturally matched with applications that require scrolling operations,
such as proceeding to the next/previous voicemail or a song in a playlist.

3.3. Two-Handed

Two-handed interactions address usage scenarios where the touchscreen is available
but the users’ hands may occlude the small screen area of the phone while holding
it in two hands. We implemented two-handed interactions to address this problem,
employing a similar user experience to a traditional game controller on a laptop or a
game console. The user can hold the phone in landscape orientation with two hands
and tap on virtual buttons on the back of the case (Figure 1(b)).

In the current implementation, we offer up to six soft buttons on the back and side of
the case. Applications include games and navigation, with the advantage of exposing
the entire screen area because the fingers are touching the back of the case rather than
covering the touchscreen.

3.4. On-Table

On-table interaction explores possible interactions around the phone by using only
built-in sensors on commodity smartphones. When the user is cooking and a phone call
comes in, his phone may be on a table and his hands may be dirty or wet. How would
he answer the phone call without polluting the screen by touching it? BeyondTouch
allows the user to tap and slide on the table around the phone to interact with the device
indirectly (Figure 1(d)). Furthermore, on-table interactions can be extended to many
applications that demand simple and straightforward interactions, such as responding
to a phone call or controlling the music player.

4. IMPLEMENTATION OF BEYONDTOUCH

Table I describes the complete set of input events that BeyondTouch supports and
related sensors applied. We implemented the BeyondTouch interactions on commodity
smartphones by interpreting data from a combination of three common built-in sensors:
the accelerometer, gyroscope, and microphones. We applied machine learning or rule-
based techniques to identify the characteristic signature of each input event. The
machine learning methods were implemented using Weka [n.d.], a publicly available
tool that provides implementations of various machine learning algorithms that can
be run in real time on a smartphone.

4.1. Choice of Detection Technique

In the early exploration of this project, we applied a rule-based method to recognize the
four corner taps for on-case interactions. Based on our observation, the rotation of the
phone case presents distinct quantitative signatures when tapping on each of the four
corners of the phone case. We implemented a straightforward rule-based solution to
detect the four corners, which worked well. The advantages of the rule-based approach
are (1) lightweight software implementation (given the limited processing power of
a smartphone), (2) ease of implementation, and (3) no requirement for training and
personalization. However, machine learning, by contrast, is appropriate for interactions
that are more complex, where the difference between input events are not obvious from
observation of the sensor input streams. We will describe both implementation methods
in the following sections.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 2, Article 16, Publication date: August 2016.



16:6 C. Zhang et al.

Table I. Interaction Techniques

Scenario Interaction Input Events Sensors Techniques

One-handed Tap Back-single-tap,
back-double-tap, side-tap

Gyroscope,
accelerometer, the
microphone at bottom

Machine learning

Tap-slide Back-single-tap,
back-double-tap,
back-slide-up,
back-slide-down

Gyroscope,
accelerometer, the
microphone at bottom

In-pocket Tap Tap on the four corners
while the phone is inside
the pocket

Gyroscope,
accelerometer, two
microphones

Rule based

Two-handed 4-point- tap Top-left, top-right,
bottom-left, bottom-right

Gyroscope,
accelerometer, the
microphone at bottom

Rule based

6-point- tap Up-left, up-right, top-left,
top-right, bottom-left,
bottom-right

Gyroscope,
accelerometer, the
microphone at bottom

Machine learning

On-table Slide, tap Slide, tap on the surface
around the phone

Gyroscope,
accelerometer, two
microphones

Machine learning

4.2. Choice of Built-In Sensors

In our initial investigation, we examined data from the accelerometer to determine
if a tap occurred anywhere on the case of a phone, inspired by work such as Whack
Gestures [Hudson et al. 2010]. To detect where the user tapped on the case, we then
added the gyroscope, which better reflects the difference in the tapping events on four
corners.

In pilot testing, we observed that when the user held the phone with a tight grip,
these two motion sensors often failed to detect the tap event, even with a strong tap
on the back case. To address this problem, we added the microphones as a third input
stream. We only consider loudness from the microphone buffer, measured in decibels
(dB). To calculate the decibel level, we first normalize each audio sample and calculate
the average root mean square (Prms) of the samples in the buffer. We then calculate
the decibel value (Equation (1)), where Pref is equal to the standard reference sound
pressure level of 20 micropascals.

LP = 20 × log10

(
Prms

Pref

)
dB (1)

In addition, a sensor fusion of microphone and inertial sensors are complementary to
filter out most of the noise, which improves the robustness of the techniques.

4.3. Rule-Based Implementation

We implemented in-pocket and two-handed (4-point-tap) with rule-based methods,
which only had tapping events on the four corners of a phone case.

4.3.1. Rationale. To detect corner taps on the device, we consider how a phone reacts
when a tapping event occurs. We first need to detect the occurrence of a corner tap (tap
detection) and then determine which of the four corners was tapped (corner classifica-
tion). We apply rule-based techniques on a sliding window of the input streams from
three sensors (accelerometer, gyroscope, and microphone) to detect and then classify
input events.
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Fig. 2. Microphone data when the back of the smartphone is tapped. In this plot, the ambient environment
noise is first relatively low and then increases as music is played. The four spikes on the right are the tapping
events, which are easily distinguishable from the ambient noise.

4.3.2. Tap Detection. We examined the device’s accelerometer and gyroscope data when
the case is tapped. One concern with microphone data is that ambient noise from the
environment might cause false triggers. However, the sound generated by the on-case
tap event is significantly louder, as measured in decibels, than the audio environ-
ment noise. This is because the solid case conducts sound better than air and the
tapping event occurs in the proximity to the microphone sensors. Figure 2 plots the
decibel value changes when tapping happens with high-volume pop music played from a
nearby speaker, placed 0.2m away from the phone. Combining all three sensor streams
therefore allows for a robust tap detection algorithm.

In our implementation, we employed slightly different tap detection thresholds for
in-pocket and two-handed scenarios based on the level of movement and the loudness
observed for each of these scenarios. Basically, those criteria examine the decibel values
from the sound, and values and derivatives of the z-axis of accelerometer as well as the
x-axis and y-axis of the gyroscope, since the peak of a tap was obvious in those axes.

For in-pocket interaction, we set two criteria for the detection of the tap event.
The first criterion is that both the maximum decibel value and the z-axis value of
the accelerometer must pass a certain threshold. Once the first criterion is met, we
examine whether the second criterion is satisfied in one of two ways. The first way is
if the x-axis value of the gyroscope and its derivative both satisfy certain thresholds.
The second way is if the y-axis value of the gyroscope and its derivative both satisfy
certain thresholds. Because the tap event happens in a very short time window, the
use of the derivative of the sensor value filters out the undesired lower frequency
movement resulting from a slower shake of the phone as opposed to a legitimate tap.
We approximate the derivative of sensor data as the change in value divided by the
change in time.

Similarly, we also set two criteria for the two-handed interaction. The first criterion
is thresholds for the maximum decibel value and the difference between the maximum
and minimum decibel values in the buffer. The second criterion can be satisfied in
one of two ways: (1) thresholds for the y-axis of the gyroscope and its derivative or
(2) thresholds for the z-axis of the accelerometer and its derivative.

The code used on each device, along with specific thresholds, is available at
http://www.czhang.org/code_beyondtouch/.

4.3.3. Corner Classification. Once the tap events have been segmented out, classifying
them into the four corners is straightforward based on the physical characteristics
of tapping at these locations (Figure 3). Each tap event contains two peaks for the
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Fig. 3. The clearly distinguished gyroscope signatures of corner taps. Gyro-y is green and gyro-x is purple.

gyroscope rotation along the x-axis and y-axis, with the second peak being opposite of
the first peak and lower in amplitude. Therefore, there are two alternative solutions
to detect the tap corners. The first is to compare the signs of the peaks on the x-axis
and y-axis of the gyroscope (e.g., for top-left from a user’s perspective, the peak on the
x-axis is negative while the y-axis is positive). The second solution is to compare the
amplitude of the first peak and the second peak on the x-axis and y-axis (e.g., for taps
on the top two corners, the amplitude of the positive/first peak is always larger than the
negative/second peak). We chose the second solution. However, the only difficulty comes
from a change in orientation of the phone itself. As the phone is rotated, the mapping
of top/bottom and left/right changes. Two kinds of orientation need to be detected. One
is whether the phone is facing the human body, which we do not detect. This is because
it is hard to recognize this orientation with the IMU and microphone. We made sure
that the phone was facing the body in our study. However, we believe that using a light
sensor or camera could possibly solve this problem. The other kind of orientation is
whether the phone is horizontally or vertically placed in the pocket, which results in
four possibilities. We examine the accelerometer data to classify this orientation and
then remap the detected corners according to the orientation of the phone from the
user’s perspective such that a user does not need to worry about the orientation of the
phone while putting it into a pocket as long as the phone faces the body.

4.3.4. Calibration on Different Phones. One advantage of using rule-based techniques over
a statistical machine learning approach is the ease of calibration for different phones
without collecting training data for each phone. We successfully tested our interactions
on a Samsung Galaxy S3, a Samsung Galaxy S4, and an HTC One with minimal
calibration effort. To calibrate our corner classification method for each of these devices
on two-handed interaction, the only parameter we need to adjust is the aspect ratio,
which is the length divided by the width of the phone. We use this parameter to
normalize the sensor data from the x-axis and y-axis of the gyroscope. To calibrate for
in-pocket interaction, we also adjusted the threshold for the z-axis of the accelerometer
level for tap detection, allowing all phones to have the same sensitivity to tap strength
despite differences in weights and dimensions. Although the adjustment is intuitive
to humans, it would be expensive for a statistical machine learning method to learn,
especially because it requires sufficient training data from each device to capture
device variation. We acquired similar performance results for all three phones in the
user study that will be presented later. If a developer wants to apply this algorithm on
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a new phone model, we would suggest to first change the dimension ratio of the phone
case and then adjust the other parameters. This can be done by observing the values
of those parameters based on a few gesture samples.

4.4. Machine Learning Implementation

4.4.1. On-Case Implementation. We implemented one-handed (tap, tap-slide) and two-
handed (6-point-tap) interactions using a combination of rule-based (segmentation)
and machine learning approaches (classification).

We use a traditional sliding window method with a window size of 0.64 seconds.
Since a tap or slide event usually last 0.5 seconds, we round it up to 0.64 seconds
for the convenience of computation in the Fourier transform. Since the sample rate of
gyroscope and accelerometer in the phones we used are 100Hz, each frame contains
64 samples with 50% overlap with adjacent frames. For each frame, the system will
extract features to determine whether an event happens (segmentation) and which
event it is (classification).

To detect the occurrence of an input event, we use a rule-based approach to detect
whether an input event (either tap or slide) has occurred by examining the combination
of thresholds for sensors, including the difference between the maximum and minimum
value from the x-axis/z-axis of the accelerometer and the y-axis/z-axis of thegyroscope.
We chose these criteria based on our observation on collected sensor data, but a more
advanced machine learning event detection method can be applied to further reduce
false errors in the future.

For classification, we extract three sets of features for each 0.64 second length buffer
from data of three axes of gyroscope and accelerometer. The features that we selected
were based on our observation and understanding of the data and gestures, which
are also common statistical features used in related works. We plotted out the data
in both time and frequency domains, decided which features to use, estimated the
time each gesture took, and chose the appropriate window size. The first set is the
time-domain features. For each axis of the data from the gyroscope and accelerometer,
we calculate the seven features over each frame, including the root mean square,
derivative of the root mean square, maximum and minimum value, mean, variance,
and median. We also calculate the ratio between maximum and minimum for the three
axes of the gyroscope and the total energy for both the gyroscope and accelerometer,
which indicates the magnitude of the whole event. In addition, the maximum decibel
value and the derivative of neighboring decibel values are also computed as features.
Therefore, we have 7 × 6 + 3 + 2 + 2 = 49 features related to amplitude.

The second set of features includes frequency and energy, which are calculated for
each axis of both the accelerometer and gyroscope. We compute the fast Fourier trans-
form (FFT) using JTransforms [Wendykier n.d.] to calculate the frequency energy on
each frequency band. We build 31 bins over a frequency of 100Hz for each axis as well
as the standard deviation of frequency energy over 31 bins, since we observe that our
input events are equally distributed in terms of energy over frequencies. In total, we
have 31 × 6 + 6 = 192 features.

As a result, we compute 241 features for each frame to detect the one-handed and
two-handed interaction gestures. We pass these features to a support vector machine
(SVM), provided by the Weka machine learning library [Weka n.d.] and then use this
model to classify gestures.

4.4.2. On-Table Implementation. The on-table interaction is also implemented using a
combination of rule-based and machine learning approaches.

In the segmentation stage of our implementation, we use a rule-based approach
to detect whether an input event (either tap or slide) has occurred by examining
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the combination of thresholds for the three sensors, including the loudness level
of the bottom microphone and the maximum and minimum value from the z-axis
of the accelerometer or y-axis of the gyroscope. This is similar to the methods we
use to detect on-case gesture events and can be potentially improved with advanced
methods.

To classify the input event, we extract features from the data streams of the mi-
crophones, gyroscope, and accelerometer. To capture the full duration of a slide event,
we used a sliding window of 1 second. Then we divide the 1-second window into 10
frames. For each frame, we extract the following basic time-domain features for all
sensors: (1) level, (2) derivative of level, (3) maximum and minimum level, and (4)
energy. A feature vector of each window is the combination of the feature vector of
the 10 frames. We put the feature vector of a window into the pretrained model for
classification.

We compared the performance of different machine learning algorithms on our col-
lected training data using 10-fold cross validation provided by Weka. Both SVM and
k-nearest neighbor (KNN) provided greater than 97.5% for precision and recall. We
elected to use KNN in our implementation, as KNN would react better to a new user’s
input data.

4.4.3. Building a Training Model. A trained machine-learning model usually can be catego-
rized based on whether it is session dependent or user dependent. A session-dependent
model requires recollecting training data before using the model each time. A user-
dependent model demands collecting training data from each user. Both of them would
increase the barrier of applying them in real-world usage. Therefore, we adopted a user-
independent model in our implementation that applies a precollected training dataset
and does not require any data collection from each user. Based on our pilot study re-
sults, we found that the performance of one-handed and two-handed interactions were
dependent on how the user holds the phone and performs the gestures. However, the
phone’s position was not changed when performing gestures for on-table interaction.
Therefore, we collected a larger set of data for building the model for one-handed and
two-handed interactions.

For on-table interaction, we first conducted a small pilot study with the authors. A
classifier was trained with the training samples only from one author. We tested that
model with other authors, and the accuracy was very high. We thought that was because
the gestures for on-table interaction did not require any direct contact with the phone,
which greatly reduced the variance between gestures. As a result, we collected training
data from only one of the researchers, who performed approximately 600 gestures for
each slide event and the tap event on a table. We varied the tapping position and
strength to approximate the behavior of different users.

To build the training set for two-handed (6-point-tap) and one-handed interactions,
we collected training data from 10 users, including two authors. Four of them provided
examples for both two interactions, whereas others provided examples for only one
of the interactions. As a result, each interaction has 10 trainers and approximately
1,000 instances for each input event. During the training process, we asked each user
to repeat each input event 100 times on a Galaxy S3, with approximately a 1-second
gap between each gesture. The data collection program did not provide any feedback
to users. Therefore, the users performed the input gestures in the manner most com-
fortable and natural to them. For one-handed interaction, all data was collected with
the right hand only.

After collecting all of the data, we manually labeled each input event in the training
set by visualizing and applying thresholds to the data. If the researcher was not sure
about the label of an instance, we discarded it to avoid polluting the training set.
Around 85% of the gestures ended up in the training set.
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5. EVALUATION METHOD

We evaluated the accuracy and usability of BeyondTouch for the interactions listed in
Table I. We presented users with a series of stimuli for the interactions and recorded
the responses interpreted by the rule-based methods or pretrained machine learning
models. All interactions were performed in a lab environment.

5.1. Participants and Apparatus

5.1.1. Rule-Based Interactions. For rule-based interactions, a study with 11 participants
(1 female) was conducted in a lab setting environment to evaluate the system at the
early stage of the project. The average accuracy was 92.27% for in-pocket interaction
and 93.59% for two-handed interaction. However, the evaluation was conducted on one
device (a Samsung Galaxy S3) and without any ambient audio noise, which was dif-
ferent from real-world scenarios. To further evaluate the accuracy of our classification
methods as well as user experience, we recruited another 12 participants (4 female).
Each participant was assigned to use one of three phones (Samsung Galaxy S3, Sam-
sung Galaxy S4, HTC One).

5.1.2. Machine Learning Interactions. For machine-learning based interactions, we re-
cruited 12 participants (1 female) for two-handed (6-point-tap) and one-handed inter-
action using a Samsung Galaxy S3 phone and another 11 participants (6 females) for
on-table interaction. Seven of them used a Samsung Galaxy S3, and the rest used a
Samsung Nexus phone.

5.2. Study Procedure

In the study, each participant went through an introduction phase—a practice phase
before starting the real tasks. We first explained the interactions to the participants and
allowed them to practice the gestures, receive feedback after performing each gesture,
and ask questions. Then each participant performed practice sessions, responding to
stimuli for each gesture in the assigned interaction technique.

5.2.1. Rule-Based Interactions. For rule-based interactions, each participant performed
two practice sessions, responding to 10 cues requesting them to tap a particular corner.
For in-pocket interaction, the participant was given audio cues and audio feedback. For
two-handed (4-point-tap) interaction, the cue was displayed on the touchscreen, and the
user also received visual feedback of green (correct) or red (incorrect) after responding
to the cue. Then each participant performed two evaluation sessions, responding to
20 randomly generated cues for each of the four corners in each interaction technique
(in-pocket and two-handed).

To evaluate the robustness of the interactions, we added background noise with
three sources simultaneously (75dB for highway noise, 60dB for people talking noise,
and 75dB for random music) to the evaluation. We asked the users to report any self-
made errors in this phase. For in-pocket interaction, we asked the participants to walk
around the table in our lab, on which three speakers were placed, to simulate the
situation that the user is in motion. The participants then placed the phone inside
a pants pocket in any orientation with the screen facing their body. For two-handed
interaction, the participants sat still next to the table.

5.2.2. Machine Learning Interactions. For machine learning interactions, each participant
performed practice sessions, responding to stimuli for each gesture in the assigned
interaction technique 10 times in a row. Similar to the two-handed (4-point-tap) rule-
based interaction, we presented the participant with blue-colored visual stimuli on the
smartphone screen, indicating which gesture to make and changing the color green and
red as the feedback. Each participant responded to 40 stimuli (2 sessions × 20 stimuli)
for each gesture with random order in one-handed and two-handed interactions. All
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Table II. Accuracy of Each Interaction Technique

Interaction In-Pocket
Two-Handed
(4-point-tap)

Two-Handed
(6-point-tap)

One-Handed-
Tap

One-Handed-
Tap-Slide On-Table

Accuracy 93.75% 92.60% 71.28% 88.47% 72.92% 93.74%
(SD = 3.35%) (SD = 5.23%) (SD = 12.89%) (SD = 3.55%) (SD = 6.53%) (SD = 4.64%)

Table III. One-Handed-Tap Confusion Matrix

Classification

User Input BackSingleTap BackDoubleTap SideTap
BackSingleTap 92.92% 4.79% 2.29%
BackDoubleTap 24.17% 73.96% 1.88%
SideTap 0.83% 0.63% 98.54%

participants were asked to use their right hand to perform tasks in one-handed interac-
tion. For the on-table interaction, each participant responded to 90 stimuli (3 sessions ×
30 stimuli), randomly chosen between tap and slide gestures. For each interaction, we
also asked the users to report any self-made errors in this phase. The process took less
than 1 hour for each participant in the user study, and there was no compensation.

6. RESULTS

We report accuracy for each interaction as the percentage of responses where the ges-
ture classification matched the stimulus and the user impressions of each interaction
based on a questionnaire administered at the end of the evaluation phase.

For in-pocket, one- and two-handed (6-point-tap, 4 point-tap) interactions, there were
480 examples (20 × 2 × 12) for each gesture, and 990 inputs (30 × 3 × 11) for on-table
interaction. Table II presents the overall accuracy and standard deviation for each
interaction.

6.1. In-Pocket Interaction

For in-pocket interaction, the overall accuracy is 93.75% (SD = 3.35%), with different
phones’ accuracy of 90.78% for Galaxy S3, 94.84% for Galaxy S4, and 95.63% for HTC
One. The 12 participants self-reported a total of 15 user-generated input errors.

6.2. Two-Handed-4-Point Interaction

For two-handed-4-point interaction, the overall accuracy is 92.60% (SD = 5.23%), with
different phones’ accuracy of 91.25% for Galaxy S3, 95.78% for Galaxy S4, and 90.78%
for HTC One. The participants did not report any user-generated input errors.

6.3. Two-Handed-6-Point Interaction

For two-handed-6-point interaction, the overall accuracy is 71.28%. The confusion ma-
trix is reported later in Table VII. The up-right corner (tapping on the right half of
upper edge on the case) was the most accurate (83.33%), and the bottom-right corner
was the least accurate (50.83%).

Some users reported that up and top points are much easier to perform than bottom
points. Some users also reported that the test sessions were so long (240 taps in two
sessions) that it made them feel tired. This also led to 12 user self-made errors.

6.4. One-Handed-Tap Interaction

For one-handed-tap interaction, the overall accuracy is 88.47%. The confusion matrix is
reported in Table III. Side-tap was the most accurate (98.54%), and double-tap was the
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Table IV. One-Handed-Tap (Back-Tap Combined + Side)
Confusion Matrix

Classification

User Input BackTap(Combined) SideTap
BackTap(Combined) 97.92% 2.08%
SideTap 1.46% 98.54%

Table V. One-Handed-Tap-Slide Confusion Matrix

Classification

User Input BackSingleTap BackDoubleTap BackSlideDown BackSlideUp
BackSingleTap 84.38% 4.38% 2.71% 8.54%
BackDoubleTap 20.00% 73.96% 0.63% 5.42%
BackSlideDown 4.58% 0.21% 41.25% 53.96%
BackSlideUp 2.50% 0% 5.42% 92.08%

Table VI. One-Handed-Tap-Slide (Back-Tap Combined) and Slide
(Combined) Confusion Matrix

Classification

User Input BackTap(Combined) Slide(Combined)
BackTap(Combined) 91.35% 8.65%
Slide(Combined) 3.65% 96.35%

least accurate (73.96%). There is a lot of confusion between double-tap and back-tap
due to the variation of strength and interval of taps between different users.

If we collapse back-tap and double-tap into one gesture, higher accuracy can be
achieved (97.92%) (Table IV).

For one-handed-tap-slide interaction, the overall accuracy is 72.92%. The confusion
matrix is reported in Table V. Back-slide-up was the most accurate (92.08%), and
back-slide-down was the least accurate (41.25%). There is a lot of confusion from back-
slide-down to back-slide-up. There is also a lot of confusion from double-tap to back-tap.

Collapsing back-tap and double-tap into one gesture, and back-slide-down and back-
slide-up into another gesture, improves accuracy to 91.35% for taps and 96.35% for
slides (Table VI).

6.5. On-Table Interaction

For the on-table interaction, 11 participants averaged 93.74% accuracy (SD = 4.64%)
over a total of 990 input events. Tap gestures were recognized with 95.68% accuracy,
and slide gestures were recognized with 91.11% accuracy.

7. DISCUSSION

Like any recognition technique, BeyondTouch is not perfect. Here we discuss the results
to uncover a better understanding of how and when BeyondTouch is suitable.

7.1. Accuracy and User Impressions

Some users reported that tapping continuously for so long (tapping and sliding more
than 500 times) made them feel less natural and comfortable. Although the experimen-
tal procedure allowed us to gather much data under different situations, we recognize
that it put unrealistic demands on users that would not be the case in everyday life.

Similar to real applications, we provided real-time feedback while participants were
testing our technique. But we observed that some users adjusted their gestures accord-
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Table VII. Two-Handed-6-Point Confusion Matrix

Classification

User Input UpLeft UpRight TopLeft TopRight BottomLeft BottomRight
UpLeft 77.92% 14.58% 3.96% 2.92% 0% 0.63%
UpRight 5.63% 83.33% 3.13% 6.46% 0% 1.46%
TopLeft 2.50% 8.75% 70.83% 15.42% 1.04% 1.46%
TopRight 0% 10.21% 8.75% 79.17% 0% 1.88%
BottomLeft 0% 7.29% 21.46% 2.92% 65.63% 2.71%
BottomRight 0.21% 17.29% 9.38% 19.38% 2.92% 50.83%

ing to the feedback given by the system, especially if they saw misclassified instances.
We take this as a self-learning process and may potentially have positive influence in
the user study result.

Next we discuss other observations for each scenario that impacted results.

7.1.1. In-Pocket Interaction. We observed that when users tried to reach the farthest
corner and tap bottom-left, sometimes they touched other corners first. This tended to
increase errors for the bottom-left corner. In addition, there are some false negatives
happening for the bottom-left corner. We did not rigorously collect ground truth for that
but informally observed approximately 1 out of 10 taps not registered. In addition, we
noticed that the depth of the pocket matters. For deep pockets, reaching the bottom
corners is harder. Moreover, for shallow pockets, walking creates more noise for the
top-right corner. In addition, walking made it relatively harder for users to locate the
positions of the corners and increased more user errors in the process.

7.1.2. One-Handed Interaction. When users tried to perform back-slide-down, they would
first wave their index fingers up. Although there is no contact with the phone, the shake
of the phone is very similar to back-slide-up, resulting in many false classifications.

7.1.3. Two-Handed Interaction. For machine learning 6-point-tap interaction, we ob-
served that the variations in the way users hold the phone, the positions they tap,
and the strengths of the taps affected individual results quite a bit. For rule-based
4-point-tap interaction, we noticed that for users with very long fingers, it is harder
for them to tap on the corners. Since they tap more toward the center, more confusion
exists, because the closer the tap position to the center, the less obvious the character-
istic of the rotation. In addition, when users adjust hands positions while holding the
phone, some false positives are introduced.

7.1.4. On-Table Interaction. Both slide and tap gestures in on-table interaction required
the user to touch the surface around the phone. Since we used microphones to recognize
the gestures, if users did not generate a loud enough sound, it would increase the
difficulty of detecting the occurrence of an event. From our observation, during the
practice, most users could learn very fast to use their fingertips and nails together to
perform the gestures, which were well recognized by the system. However, user fatigue
resulted in false negatives in the latter stages of the experiment.

7.2. Comparison Between Rule-Based and Machine Learning Methods

As the user study results show, rule-based interaction provided greater than 90%
accuracy without requiring any training data from the users. As a comparison, ma-
chine learning interactions requested precollected training data and a prebuilt training
model and provided a relative lower accuracy. However, the results cannot be directly
compared, as most of the machine learning interactions were more complicated than
rule-based interactions.
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To compare the effectiveness of the rule-based method against a machine learning
method, we reused the training data collected for two-handed-6-point interaction. We
only used the instances for the top-left, top-right, bottom-left, and bottom-right corners,
which overlaps between 4-point-tap (rule-based) and 6-point-tap (machine learning)
interactions.

First, we built user-independent models with a machine learning implementation
and evaluated using leave-one-participant-out cross validation, where the mean accu-
racy was 86.53% with a standard deviation of 7.38%. We then passed the same dataset
through our rule-based classification and compared the classification result with the
ground truth. As a result, we received a mean accuracy of 91.27% with a standard
deviation of 6.84%. This additional experiment indicates that the simple rule-based
method is able to work better across different users without any prerequisite data
collection on detecting the four corner tap event.

7.3. Personalization for Machine Learning Interactions

In the user study, the one-handed and two-handed(6-point-tap) machine learning in-
teractions showed an obvious drop in terms of accuracy compared to the result that
we computed on the training dataset using 10-fold cross validation and the leave-one-
participant-out method. This gap is mostly caused by individual differences, such as a
user’s finger length, tap position, and strength of tap. Recall that there were 16 total
trainers and that we collected training data for each scenario from a different subset
of 10 of the overall 16. We further tried to encourage each trainer to perform the in-
put events in whatever way he or she felt most comfortable, thus introducing lots of
opportunities for these individual differences to be revealed in the models generated.
A personalization procedure should improve the results of the machine learning model
for any given user.

Our approach to personalization is a revision on the leave-one-participant-out
method. Instead of leaving one trainer’s complete training set out, we methodically
incorporated a stratified and randomly selected subset of that person’s training data
into the model that was then used to test the remainder of that trainer’s input data.
We refer to this as “leave-one-participant-partially-out” to reflect that some of an indi-
vidual’s data is incorporated into the learned model that is used for classification.

Specifically for one-handed and two-handed(6-point-tap) interactions, we collected
approximately 100 training instances for each event from 10 different trainers. Instead
of using 9 trainers’ data to build the model to evaluate the 10th trainer’s data, we
gradually added a portion of instances from the 10th trainer’s data into the training
set to build a new model. Then we used this new model to evaluate the rest of the 10th
trainer’s dataset. To avoid bias, we ran the sample selection process 10 times, then
built and evaluated the model for each of them. Next, we averaged results from the
10 sample runs and report those in the following. Note that although the ratio of test
data to training data changes based on the amount of training events extracted from
the 10th trainer, the difference in those ratios is negligible for purposes of comparison.

To evaluate this method, we compare the accuracy results for different sizes of the
trainers’ input set (randomly selected subsets of size 10, 20, 30, 40, and 50 of the
approximately 100 overall events) against the baseline of using none of that person’s
training set to build the model (i.e., using zero of the overall events).

In Figure 4, we show the personalization results for the three usage scenarios.
For each graph, the red/bolder line represents the averaged result for the leave-one-
participant-partially-out method across all trainers in our training set. The x-axis
indicates how many of the trainer’s input events were added to build the personalized
machine learning model. For example, the one-handed-tap interaction scenario pro-
vides three input events: back-tap, back-double-tap, and side-tap. Each user provided
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Fig. 4. Personalization results.
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around 100 instances for each input event. An x-axis value of 10 represents random
selection of 10 instances for each input event from the 10th user’s dataset. Since the
one-handed-tap-slide scenario has three distinct input events, a total of 10 × 3 = 30
instances were incorporated into the personalized training set.

Figure 4 reveals an interesting insight. There is a pretty significant spread of ac-
curacy results across the trainers, with each scenario having at least one trainer’s
classification accuracy being much poorer than the rest of the trainers with no person-
alization (x-axis value of zero). That classification gap decreases when personalization
is introduced. Without personalization, the average accuracy across all 10 trainers
is 80.00% (one-handed-tap-slide), 88.42% (one-handed-tap), and 85.06% (two-handed)
with standard deviations of 0.13, 0.08, and 0.12, respectively. Using 30 personal train-
ing events (per input type), the average accuracies increase to 88.17%, 93.89%, and
92.06%, whereas the standard deviations decrease to 0.09, 0.04, and 0.06. Figure 4
demonstrates these positive trends for all three machine learning scenarios.

Furthermore, beyond using 30 examples of each event from the trainer, there is no
appreciable improvement of the personalization. This is also good, as it means that
we need collect only a small set of an individual BeyondTouch user training data to
sufficiently personalize that user’s model.

A closer examination of the results in Figure 2 shows that what personalization
is doing is more about improving the classification for the poorest performers in the
leave-one-participant-out results. The better-performing trainers do not improve that
much. This suggests that it might be worthwhile in practice determining on the fly
how well classification accuracy is for a given user. If that accuracy is below some
acceptable threshold, BeyondTouch can recommend additional training from that user
to personalize and improve his results.

For example, it may be possible to infer incorrect real-time classifications by Be-
yondTouch by sensing the user repeating an interaction or developing some other
situation-specific heuristic. A running count of these errors can help to determine if a
threshold of error tolerance is met. If so, training can be suggested to the user. With
this approach, BeyondTouch could be used “out of the box,” and for a smaller percent-
age of users, only after having some experience with BeyondTouch, a user could decide
whether it would be worthwhile to improve accuracy by taking some time out to give
personalized training data.

7.4. Challenges to Practical Deployment

Several issues beyond recognition rates impact the practical utility of BeyondTouch.

7.4.1. Calibration on Different Phones. Smartphones vary in terms of form factor and
sensor capabilities, which calls into question how our results work across devices.
In our user study, we have already demonstrated that our rule-based interactions
can be calibrated on different phones and provide similar recognition accuracies. For
machine learning interactions, we did not test our technique on a large variety of
phones. However, since the sensors we used are the most common ones and we applied
a machine learning technique in the implementation, calibration across phones is a
matter of collecting enough training data prior to installation on a given phone and
then allowing for personalization as described earlier. Although this data collection
may be time consuming, it does not directly impact the user of the device until and
unless personalization is warranted.

7.4.2. Usage of Multiple Microphones. Most smartphones have more than one micro-
phone. Usually, the manufacturer positions one of the microphones at the bottom to
receive the user’s voice input and the other at the top to detect the ambient sound (to
improve the call quality by reducing environmental noise). These two microphones can
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also be leveraged for interaction purposes, as demonstrated in our on-table interaction.
According to basic physical principles, if the distances between a sound source and
two audio receivers are different, the loudness level of the audio received by the two
receivers should be different. We found that to be true when the physical touch event
was close to or on the phone case. We imagine that richer potential interaction events
can be detected by combing the data from multiple microphones and inertial sensors.

7.4.3. Interactions by Contexts. In practice, many of the interactions that we developed
are designed to work in specific contexts. For example, the one-handed interaction is
designed for the scenario when the user prefers to hold and interact with the phone
in one hand, whereas two-handed interaction is tuned for a user holding the phone in
two hands. If the phone runs two-handed interaction while holding it in one hand, the
false positives and false negatives would be increased. Hence, an automatic detection
of context about the position and orientation of the phone [Wiese et al. 2013] is a
necessary step for applying BeyondTouch in real-world scenarios.

7.4.4. Energy Consumption. BeyondTouch interactions are largely dependent on sen-
sors. However, recently released smartphones (e.g., Moto X, iPhone 5S/6) are begin-
ning to feature a low-power, always-on coprocessor for managing the sensors. With
this kind of new hardware, we expect that the energy consumption of the sensor usage
will be greatly reduced going forward and would not be a concern while using these
sensor-based techniques.

8. CRITIQUE OF APPLICATIONS OF BEYONDTOUCH

In addition to the applications proposed in Section 1, the study participants also sug-
gested interesting usage scenarios for BeyondTouch. In this section, we discuss how
we can apply our techniques to these scenarios by exploring the limitations of Beyond-
Touch and the opportunities to address these constraints in future work.

8.1. In-Pocket

The in-pocket interaction can help with many scenarios that require a simple and quick
response with up to four discrete input events.

8.1.1. Applications. The simplest interaction is a single tap anywhere on the phone,
but previous research would handle this simple case. By providing up to four events,
BeyondTouch can support many more applications, such as reading aloud SMS/email,
controlling a music player, recording audio secretly, or forward/backward events. Google
Glass can also utilize the in-pocket interaction as an alternative interaction method.
It is natural to map a pair of the corners to navigate the tab in glass menu and use
another pair to switch menu levels.

8.1.2. Limitations. In the evaluation, we observed minimal false positives and found
that false negatives and classification errors were influenced by the size of a user’s
pocket. A tight pocket may increase the chance of false negative. A phone inside a
loose pocket may easily change the phone’s orientation and position, which increases
the effort for a user to find the phone. False-positive events were rare when walking
at normal speed (as in our evaluation), which should be enough for most applications.
However, if the user starts running, there is a higher chance of triggering a false-
positive event.

8.1.3. Future Work. In our current implementation, we do not provide any feedback
other than audio, which may not be appropriate in some scenarios. For example, when
tapping to respond to a phone call, it is necessary to notify the user of the actual
response. Several participants suggested vibration as a good candidate for feedback.
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Although we rarely observed false positives in the evaluation of the in-pocket inter-
action, a false positive can cause serious problems under certain conditions (e.g., an
emergency call). One feasible way to address this issue in future work is to provide a
user-defined unlock gesture with a sequence of tap events. It is unlikely to trigger a
continuous false positive with the same sequence. Another observation is that the an-
tidiagonal positions (e.g., top-left and bottom-right) are rarely confused (see Table III).
To avoid the misclassification of events, a delay between the feedback and the actual
action can be set such that users can have time to undo or correct the classification
errors.

8.2. One-Handed

One-handed interactions can support up to five input events. In our evaluation, some
gestures were detected with high accuracy, whereas others were confused with other
gestures. However, not all applications require all five events. As reported in the results,
we can achieve higher accuracy by combining the single and double back taps into a
single gesture and by combining the up and down swipes into a single gesture. However,
how a new combination of input events influence the usability needs to be further
evaluated.

8.2.1. Applications. While a user is holding the phone in one hand on a phone call, a
common task is to mute the microphone. Instead of moving the phone from the ear and
finding the mute button on the screen, the user can directly use the index finger/thumb
to tap on the phone to activate the mute function. Vibration feedback can be provided
for this eyes-free interaction. Participants suggested many other applications that only
need a single input event from one-handed gestures, such as taking selfies with the
front camera, playing Flappy Bird (requires high speed), and a quick check of the time.

The most common scenarios for one-handed interaction with phones are reading
Web sites/books/emails or playing videos. These usually require two or three input
gestures, such as forward/backward. From the evaluation, we can see that there is little
confusion between tap and slide events or tap on back and tap on side events. Therefore,
we can map these pairs to backward/forward functions (e.g., map tap with forward
and slide with backward). Unfortunately, this mapping is arbitrary and unnatural
[Norman 2013]. The natural mapping should be slide up and down, which exhibited
some confusion of classification in the evaluation and may require personalization in
actual application. These simple tap events can also be used as a shortcut to certain
functions/menus, such as mapping tap events to open the task managers and then
using the slide up/down or side tap for switching applications.

8.2.2. Limitations. One limitation of one-handed interaction is the potential for false
positives while users are adjusting their hands. Based on our observation, even if
a user performs gestures while walking around, as long as he is holding the phone
steadily, there will be a lower chance of triggering false positives. But if a user shakes
the phone and generates sound noise at the same time (e.g., scratching the case), there
will be a higher chance of triggering false positives. As mentioned earlier, all one-
handed interaction was performed by the right hand of the participants regardless of
their dominant hand. Nevertheless, we believe that our method would be generalizable
for both hands as long as the hand posture detected, which has been proven possible
[McGrath and Li 2014].

8.2.3. Future Work. We are mostly using the rule-based method for segmentation now.
However, a machine learning plus rule-based method can be built to provide much bet-
ter results to minimize false-positive errors. One way is to systematically collect noise
input from various users and add them into the machine learning classifier. Another
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possible way is to apply more signal processing methods and look at the frequency do-
main of the data. For example, when the user is moving the hands, the relative sound
is different from a tap event, which can be separated by a band-pass filter. In addition,
we can explore a higher resolution of input events, such as which position of the back
case is tapped and sliding up/down on the side case. Our preliminary investigation
indicates a high likelihood of detecting these events for one-handed gestures. However,
considering the dexterity of fingers while holding a phone in one hand, too many input
events may be unnatural and unnecessary. Therefore, identifying a natural mapping
is prudent before applying these gestures to any applications.

8.3. Two-Handed

With two-handed interaction techniques, even one or two input events on the back of
the phone can be useful. For example, we may hold the phone in two hands to take
a picture in landscape orientation. With BeyondTouch, the user can tap the side case
with the thumb (up-left/right gesture) to take a picture, which is a natural mapping.

8.3.1. Applications. The two-handed interactions may also support other common sce-
narios where users hold the phone in two hands, such as gaming, watching videos,
browsing Web sites, or reading books. For example, it is natural to map the top-left and
top-right event to backward/forward events to navigate a video or Web site, mapping
the remaining events to other functions like stop/start. One of the most common two-
handed usage scenarios is gaming, such as playing car-racing games or Whac-A-Mole.
For car racing, we can map top-left to brake and top-right to gas, and up-left/right for
directions, which avoids the fingers occluding the screen.

8.3.2. Limitations. One limitation of the two-handed interaction is the input detection
speed, as one input event usually lasts more than 0.5 seconds. Any event that occurs
too fast may influence the classification result. Another limitation is similar to the
one-handed one—that is, the user’s additional hand movement may introduce false
positives.

8.3.3. Future Work. The solutions to the false-positive problems are similar to what
we propose for the one-handed interactions: collecting more noise data and applying
other signal processing methods. The variance of the user’s tap positions requires
personalization. Another possible solution is to add simple physical tactile feedback
on the back of phone (e.g., a plastic button) such that each user can tap on the same
position.

8.4. On-Table

The on-table interaction can help with many scenarios that require a simple and quick
response without touching the phone when the phone is placed on a surface.

8.4.1. Applications. Because on-table only recognizes two-input events (slide and tap),
it is best suited for applications using simple input events. The best applications are
the ones where a user has to interact with the phone without touching it, such as
controlling a music player or a phone call. One motivation of the on-table interaction
is to provide interaction gestures, which can be performed when one’s hands are dirty
(e.g., while cooking). Applying on-table to a music player, we can use the tap events to
play/pause a song and the slide event to switch to another song. This is also a natural
mapping between on-table gestures and touchscreen gestures. Similarly, we can map
the tap and slide event to answer or reject a phone call.

8.4.2. Limitations. In the study, if the nail of the participants’ finger were too long, they
felt uncomfortable using their fingers and nails to conduct the slide gesture. In addition,
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some users spent longer time to learn how to perform these gestures, especially if their
initial tap gestures were light. In the study, the surface below the phone was either
wood or plastic, making detection simpler. Although we have not tested it yet, we expect
that the on-table interaction may not work well on surfaces that do not conduct sound
well. Another limitation for the current implementation of on-table is that the classifier
may be influenced when there is a significant noise source nearby.

8.4.3. Future Work. To address the ambient noise issue, one obvious next step is to
introduce frequency-domain features to distinguish different sound sources. We can
apply a band-pass filter in the segmentation part to filter out noise. The system must
also be tuned for the varying sound propagation properties of different surface ma-
terials. In addition, by utilizing the frequency difference of the sound generated from
performing gestures, we expect to further increase the variety of input events [Harrison
et al. 2011].

9. CONCLUSION

We presented the implementation and evaluation of BeyondTouch, a family of inter-
action techniques that extend the input language to areas off the touchscreen of a
smartphone while using only built-in sensors. BeyondTouch can be used in contexts
when the touchscreen is not readily available, such as when the phone is inside a
pocket, when it is on a table and the user’s hands are dirty or wet, when touching
the screen occludes the display, or when the user is holding the phone in one hand
while the other hand is occupied with another task. We developed the interactions
by machine learning (one-handed, two-handed-6-point, on-table) and rule-based (two-
handed-4-point, in-pocket) methods. We also conducted experiments to compare the
two implementation methods, which showed that the rule-based method can outper-
form the machine learning implementation without the need to collect any training
data for two-handed-4-point interaction. Our evaluation shows that for machine learn-
ing interactions, user-independent recognition results for various events range from
just over 70% to greater than 90%, with significant improvements possible with extra
personalization, and rule-based interactions can achieve greater than 92% accuracy.
We also explored the space of practical applications of BeyondTouch, given its current
recognition rates, which we plan to review in the future.
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