
ProgramAlly: Creating Custom Visual Access Programs via
Multi-Modal End-User Programming

Jaylin Herskovitz
University of Michigan
Ann Arbor, MI, USA
jayhersk@umich.edu

Andi Xu
University of Michigan
Ann Arbor, MI, USA
andixu@umich.edu

Rahaf Alharbi
University of Michigan
Ann Arbor, MI, USA
rmalharb@umich.edu

Anhong Guo
University of Michigan
Ann Arbor, MI, USA
anhong@umich.edu

Block-Based Programming Natural Language Programming By Example Run Filtering Programs

Create programs by filling in parameters Generate from natural
language

Or, edit with a follow-up
question

Demonstrate filtering by
selecting an item Hear filtered output

Figure 1: ProgramAlly is an end-user programming tool for creating visual information filtering programs. ProgramAlly
provides a multi-modal interface, with block-based, natural language, and programming by example approaches.

ABSTRACT
Existing visual assistive technologies are built for simple and com-
mon use cases, and have few avenues for blind people to customize
their functionalities. Drawing from prior work on DIY assistive
technology, this paper investigates end-user programming as a
means for users to create and customize visual access programs to
meet their unique needs. We introduce ProgramAlly, a system for
creating custom filters for visual information, e.g., ‘find NUMBER
on BUS’, leveraging three end-user programming approaches: block
programming, natural language, and programming by example. To
implement ProgramAlly, we designed a representation of visual
filtering tasks based on scenarios encountered by blind people, and
integrated a set of on-device and cloud models for generating and
running these programs. In user studies with 12 blind adults, we
found that participants preferred different programming modal-
ities depending on the task, and envisioned using visual access
programs to address unique accessibility challenges that are oth-
erwise difficult with existing applications. Through ProgramAlly,

we present an exploration of how blind end-users can create visual
access programs to customize and control their experiences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676391

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools; Interactive systems and tools.

KEYWORDS
Accessibility, Assistive technology, Do-it-yourself, End-user pro-
gramming, Blind, Visual impairment, Design

ACM Reference Format:
Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo. 2024. Progra-
mAlly: Creating Custom Visual Access Programs via Multi-Modal End-User
Programming. In The 37th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3654777.3676391

1 INTRODUCTION
Artificial intelligence (AI)-based assistive technologies can help
blind people gain visual access in a variety of common scenarios,
such as reading printed text and identifying objects. These appli-
cations tend to be designed for simple and common use cases to
maximize their broad usability, and prior work has demonstrated
that there is still a long-tail of diverse scenarios that automated assis-
tive technologies cannot account for [26]. This leads to users having
to shoulder additional cognitive load and adjust how they use the
technology to get usable results. Depending on the application,

https://doi.org/10.1145/3654777.3676391
https://doi.org/10.1145/3654777.3676391
mailto:permissions@acm.org

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

users may need to sift through irrelevant or repetitive information,
ask follow up questions, or re-take photos to find specific pieces
of information they are looking for. While these methods can be
acceptable in some situations, they can be especially difficult in sit-
uations where people want a specific piece of information quickly.
For example, situations that are repetitive (like sorting mail), time-
sensitive (like catching a bus), or require scanning an entire object
or room with the camera (like finding an expiration date) can all
become burdensome with general purpose assistive technology.

Do-It-Yourself (DIY) assistive technology research has sought to
address the related issue of a lack of customizability in assistive de-
vices [29]. To this end, a variety of approaches have been developed
aiming to make it easier for non-experts to create adaptive 3D mod-
els for themselves or a family member [12, 28]. The same concept
has yet to be fully applied to the space of assistive software. From
prior work, we know that blind people already put a significant
degree of effort into customizing, hacking, or simply envisioning
new assistive technologies [26]. Yet, there is a gap between the
technologies and customizations that people desire to create, and
the systems that can support them in doing so with various degrees
of technical expertise.

End-user programming is a potential method for supporting
users in customizing and DIY-ing AI assistive software. Ko et al.
define end-user programming as a form of programming done by
non-professionals, ‘to support some goal in their own domains of
expertise’, further, ‘to achieve the result of a program primarily for
personal, rather [than] public use’ [34]. This definition is aligned
with assistive technology needs: blind people are domain experts in
designing and using assistive technology [4], and there is a long-tail
of unique scenarios that require personalization to meet individ-
ual needs. End-user programming approaches, while powerful for
enabling users to do more complex tasks, have not yet been ap-
plied to the domain of visual accessibility. Doing so presents new
research challenges, namely in making tools that are approachable,
accessible, and expressive. In this work, we demonstrate the poten-
tial of end-user programming approaches for assistive technology
creation and customization.

We introduce ProgramAlly, an end-user programming tool for
creating and customizing reusable visual information filters (see
Figure 1). ProgramAlly is a mobile application that provides a multi-
modal interface for creating and iteratively editing short block-
based programs (e.g., ‘find NUMBER on BUS’). It is built on a
generalizable program representation of similar filtering tasks, de-
rived from a dataset of real-world scenarios from blind people’s
everyday experiences. ProgramAlly provides a set of methods for
implementing programs, using multiple interaction modes: direct
input, speech, and camera input. These modes implement common
end-user programming approaches: block-based programming, nat-
ural language programming, and programming by example. Progra-
mAlly integrates a set of on-device and cloud models for generating
and running programs, and can easily be extended to support new,
specialized models.

In a study of ProgramAlly with 12 blind participants, we assessed
its three program creation modes, comparing ProgramAlly to exist-
ing AI-powered assistive applications, and gathering participants’
thoughts on programming and DIY-ing assistive technology more
broadly. Four of these participants were consulted as ProgramAlly

was being developed, providing design feedback and suggestions for
new features, as well as evaluating the programming interfaces and
concept. The remaining participants performed a final evaluation
of ProgramAlly in both in-person and remote settings.

We found that participants were receptive to the idea of cus-
tomizing and programming their assistive technology, even if they
had no programming experience. Participants envisioned using
different programming interfaces depending on the program they
wanted to write, the setting, and their experiences with technol-
ogy. We observed that each interface requires different cognitive
and technical skills, and outline specific challenges faced by blind
end-user programmers when creating visual programs.

Overall, ProgramAlly is an investigation of how end-user pro-
gramming techniques can be used to create and customize AI-based
assistive technology. ProgramAlly aims to inform how AI models
may be directly used as building blocks by blind people in order
to support new, complex tasks. This work aims to promote the de-
mocratization of AI technology creation and support blind people
in having greater control over the AI-based technologies in their
lives. This paper makes the following contributions:

(1) A generalized representation of visual information filtering
tasks, informed by real-world scenarios from blind people’s
everyday experiences, that can be easily extended to support
new object classes.

(2) ProgramAlly, a system instantiating this representation and
providing a set of multi-modal interaction methods for cre-
ating visual information filtering programs: block-based pro-
gramming, natural language programming, and program-
ming by example.

(3) A study of ProgramAlly with blind users, assessing the ap-
plication of end-user programming approaches to the DIY
assistive technology space and highlighting new challenges
faced by blind end-user programmers.

2 RELATED WORK
ProgramAlly builds upon a body of prior research on accessibil-
ity and programming tools. We first review the need to express
specific intents in assistive technology. Then, we review various ap-
proaches to technology personalization: personalization in assistive
technologies, DIY assistive technology, and end-user programming.

2.1 Information Seeking in Assistive
Technology

Searching visual scenes for specific pieces of information has al-
ways been an important aspect of assistive technology design. In
early remote human assistance approaches like VizWiz, users would
submit a question along with an image, and assistants would use
their human intelligence to determine a relevant answer [5]. This
need for specific information is present across a variety of accessi-
bility contexts: Find My Things and Kacorri use teachable object
recognizers to help blind users locate specific possessions [32, 50],
VizLens helps blind users search for specific buttons on physical
interfaces [23], and CueSee highlights products of interest for peo-
ple with low vision [72]. Even outside of accessibility contexts, the
Ctrl-F shortcut for ‘find’ is ubiquitous. General-purpose and specific
assistive technologies each have their uses; compare the ambient

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

audio cues in Microsoft’s Soundscape [47] to navigation directions
from Google Maps, neither is a direct replacement for the other.

Yet, current automated assistive applications present challenges
to getting specific information quickly. Whether they run on a live
camera feed (e.g, Seeing AI [46]) or on a static image (e.g, the GPT-
4 powered ‘Be My AI’ [18]), commercial applications have taken
a general approach to describing visual information, conveying
all results from the underlying OCR or object detection models,
or generating as rich of a description about the visual content as
possible. While this is sometimes desirable, it risks slowing down
and increasing the cognitive burden on users who are looking for
something specific [20]. In this work, we aim to target this need
for specificity. ProgramAlly is a live assistive technology that can
provide continuous feedback, but it also aims to capture a user’s
explicit intent through the creation of filtering programs.

2.2 Methods for Personalizing Assistive
Technology

In accessibility research, personalization of technology to meet user
needs is used to reduce the burden of accessibility on users [21, 61,
62]. This typically leaves the function of the technology unchanged,
but aims to automatically map the input and output mechanisms
to new systems or modalities [19, 69]. For example, Yamagami
et al. recently considered how people with motor impairments
would create personalized gesture sets that map to common input
mechanisms [71].

Work customizing the functionality of assistive technology is
more limited in comparison. In AI assistive technology, teachable
object recognizers have been used to allow users to personalize
recognition models themselves [33]. Users capture their own im-
age or video data of unique objects that can be stored and later
recognized [50, 64]. These approaches can be more useful than
off the shelf object recognition models as they are customized to
user’s specific needs [9, 32]. However, for commercial applications,
users have limited avenues for customization. While screen readers
can be personalized through a variety of settings, shortcuts, and
add-ons [49], AI powered assistive applications are typically part
of closed software ecosystems. While they may have some settings
within the application for things like language and output speed,
this is typically the extent of the customization. Through this work,
we hope to demonstrate new methods for personalizing assistive
technology functionality to meet unique user needs.

2.3 DIY Assistive Technology
DIY communities have adopted an approach to making centered
around personalization, democratization, and collaboration [37,
63]. For assistive technology, DIY approaches can help to address
assistive technology adoption due to unique or changing needs [29].
To this end, prior research on DIY assistive technology has sought
to make the process of prototyping and making more accessible to
participants with a range of technical skills [44, 56].

Most of this research focuses on making physical tools for acces-
sibility (e.g., making 3D-printed devices like an ironing guide, right
angle spoon, or tactile graphics [10], prototyping custom prosthet-
ics [27]), rather than software tools. Some tools are being developed

to support blind people in DIY-ing more high-tech hardware sens-
ing systems, such as A11yBits [25] or the Blind Arduino Project
[30]. While these raise the ceiling of high-tech DIY creation, little
research has focused on DIY-ing new software systems for existing
devices users already own. In their original case studies of DIY
assistive technology, Hurst and Tobias highlighted one instance of
‘high-tech custom-built assistive technology’, wherein a team of
professional programmers worked with an artist with ALS to create
software that used eye-tracking input for drawing [29]. Lowering
the barrier to entry for creating technically complex assistive soft-
ware is an important next step in enabling people to DIY personally
meaningful assistive technology.

2.4 End-User Programming
Decades of end-user programming research has sought to under-
stand and support programming work done by people who are not
trained as programmers [51]. While initially focusing on end-user
programming in professional contexts (e.g., using spreadsheets or
other domain-specific tools [59]), a variety of approaches have been
developed to support programming for personal utility as well. For
example, Marmite is an end-user programming tool that allows
users to create new applications by combining data and services
from multiple existing websites [70]. Here, we describe previous
end-user programming approaches that work towards the goal of
making programming more approachable for novices. In this work,
we aim to apply these existing end-user programming approaches
to the domain of visual assistive technology, enabling blind people
to have a new level of control over assistive software.

Block-Based Programming. Visual, block-based programming ap-
proaches allow users to create programs by graphically organizing
elements. These approaches often aim to support novices by provid-
ing pre-structured statements to reduce or eliminate syntax errors
[48], for example, as in Scratch [52]. While these approaches are
commonly used in educational settings [68], they are also used
in commercial mobile automation tools to provide sets of compo-
nents that users can arrange as they wish to create time-saving
automations, as in Shortcuts on iOS [1] and Google Assistant [42].

Natural Language Programming. Further work has aimed to syn-
thesize programs from natural language alone. These approaches
commonly require a set of training data consisting of queries and
desired automations [17, 39]. Large language models have also been
used for program synthesis, with mixed results [2, 67].

Programming By Example. Programming by example approaches
alternatively allow users to create programs by providing demon-
strations of desired functionality, without the need for any code
[16, 40]. Programming by example has been implemented in a range
of domains, for instance, Rousillon automates web scraping with a
demonstration from users on how to collect the first row of a data
table [11], and Sugilite automates actions on mobile interface using
a demonstration and natural language request [38].

End-User Programming and Accessibility. The accessibility of pro-
gramming tools is a nascent area [53–55] that has largely focused
on developers rather than end users. End-user programming ap-
proaches have occasionally been applied to accessibility contexts
for the purposes of sharing accessibility bugs and teaching blind
children. For example, for web accessibility, demonstration has been

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

used as a method for end-users to convey accessibility issues to
developers [3, 6]. Story blocks is a tangible block-based tool for
teaching blind students programming concepts [36]. We aim to con-
tinue and extend this line of research by supporting blind end-user
programmers in creating new visual assistive software.

3 PROGRAMALLY
ProgramAlly is a mobile application that implements end-user pro-
gramming techniques to allow users to create block-based visual
information filtering programs (e.g., ‘find NUMBER on BUS’). Pro-
gramAlly is implemented as a native iOS application, and consists
of the following components, as shown in Figure 2:

(1) A program representation, as the framework for imple-
menting and running programs with on-device models.

(2) Program creation interfaces provide a multi-modal set of
tools for users to create and iterate on programs.

(3) A program generation server provides the components
for automatically generating programs based on images or
natural language text.

3.1 Design Goals
Overall, we designed ProgramAlly based on three primary goals:
Expressiveness, Approachability, and Accessibility.

D1: Expressiveness. ProgramAlly’s goal is to be an interface
where users can customize off-the-shelf models for their own uses.
Programs should be able to support a wide variety of real-world
use cases through a flexible structure and range of models.

D2: Approachability. ProgramAlly needs to be approachable
for non-experts. To this end, it includes a set of methods to create
and iterate on programs through multiple modalities, and users can
choose what fits their needs. ProgramAlly should aim to have as
little technical jargon as possible and explain program parameters
in natural terms.

D3: Accessibility. ProgramAlly needs to be VoiceOver and
Braille display accessible for users, both while creating and run-
ning programs. ProgramAlly’s VoiceOver implementation groups
related parameters together to provide context for each statement.
Additionally, ProgramAlly provides visual context while running
programs to help the user aim and know what is in frame.

3.2 Visual Filtering Programs in ProgramAlly
ProgramAlly is built on a generalizable representation of visual
filtering tasks. Here, we describe how that represntation was de-
signed, how it is implemented, and how it is used to run visual
filtering programs.

3.2.1 Designing a Representation of Filtering Tasks. ProgramAlly’s
scope of programming visual filtering tasks was determined based
on prior work indicating it to be a possible domain for assistive
technology customization [26]. We aimed to understand features of
filtering tasks in order to build a program representation that could
capture a variety of user needs (D1: Expressiveness). Herskovitz
et al. captured a dataset of scenarios where blind participants de-
scribed cases of wanting to create or customize assistive technology
[26]. From this dataset, we labeled specific instances as filtering
tasks: cases where the participant was searching for a certain type

of information. We considered a task to require filtering if using a
general scene description tool like Be My AI [18] or OCR like Seeing
AI’s Document Mode [46] would produce extraneous or distracting
information beyond the intended task, but could produce useful
results with additional processing.

Out of the original set of 201 scenarios, we identified 29 as filter-
ing. These were fairly evenly spread across all 12 participants from
the dataset, with each participant describing at least one. Scenarios
fell roughly into two types: finding specific types of text, or specific
items. For searching for text, this could be finding specific strings
(i.e., a name on a package, a room number in a hotel), finding certain
types of text (i.e., a number of miles on a treadmill, the number of
calories on a package), or finding text in a specific location (i.e., on
a thermostat display, on a license plate). For searching for objects,
this could be finding a specific type of item (i.e., a trash can in a
mall, a stairway), or items in a specific location (i.e., a person in a
chair, an obstacle on a sidewalk).

From this analysis, we determined two key aspects to include in
our filtering program representation: (1) the ability to filter by type
of object or text, and (2) the ability to filter by an item’s location.
Our representation includes two types of statements to address this:
a ‘find’ statement, and an ‘on’ statement to convey objects over-
lapping. We confirmed this representation by analyzing a random
sample of questions from the VizWiz Question Answering dataset,
a dataset of images and questions asked by blind people [24]. We
found that the two statements in our representation could repre-
sent a significant portion (approximately half) of the 100 queries
we analyzed, without the need for additional operators that would
increase program complexity.

3.2.2 Program Representation. Programs in ProgramAlly are gen-
erally in the form ‘find ITEM on ITEM’, with any number of
‘find’ or ‘on’ statements. For example, a program can range from
‘find CAR’ to ‘find COLOR on CAR’ to ‘find TEXT on LICENSE
PLATE on CAR’. Adding multiple ‘find’ statements runs each ‘find’
statement in parallel and produces a similar effect to an OR operator.
For example, the program ‘find COLOR on CAR, find TEXT on
LICENSE PLATE on CAR’ for locating a ride share would announce
both the color and license plate number of a car if visible.

Additionally, each item in the statements can consist of both a
target item (e.g., an object, a type of text), and an optional adjective
to describe that target. ProgramAlly supports adjectives denoting
color, size, or location. For example, ‘find NUMBER on RED BUS’,
‘find LARGEST TEXT on SIGN’, or ‘find ADDRESS on CENTER
ENVELOPE’ are programs where the output would be further re-
stricted to match specific conditions. Programs in ProgramAlly are
stored as lists of these items (adjective and target pairs).

3.2.3 Running Programs. ProgramAlly uses this representation to
run programs to generate live output. ProgramAlly does this by
iterating over the list of items in a program backwards, cropping or
filtering the source image at each step. For example, in the ‘find
NUMBER on BUS’ program shown in Figure 2, ProgramAlly first
runs an object detection model that has the class ‘bus’. The model
will output a series of bounding boxes that have that class label.
Then, the next item in the program is processed. In this case, for
each bus bounding box, the frame is cropped and passed into a
text detection model. The resulting text is then filtered for strings

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

that only consist of numbers. ProgramAlly keeps track of points
where filtering fails (say, if no buses are found), and later uses that
information to generate descriptive program output.

ProgramAlly currently leverages a set of models and functions
for processing each piece of a program. Each item that can be in-
cluded in a program is stored in a dictionary associating it with
the relevant model. The two primary types of targets, objects and
text, are both recognized with a set of on-device models, though
this could be extended in the future to support cloud models as
well. For object detection, ProgramAlly uses a set of YOLO models
as they have low latency on a range of iPhones. This includes the
default set of 80 object classes detected by YOLOv8 [57, 66]. Ad-
ditionally, we included a set of modified YOLO-World models, a
version of YOLOv8 that can be extended with new detection classes
without any fine-tuning through a vision-language modeling ap-
proach [13, 65]. We added four additional models with classes that
we chose to be relevant to accessibility tasks (D1: Expressiveness)
[8]: an outdoor navigation model (‘sign’, ‘license plate’), an indoor
navigation model (‘door’, ‘stairs’, ‘hallway’, ‘exit sign’, ‘trash can’),
a reading model (‘envelope’, ‘package’, ‘document”, ‘poster’), and a
product identification model (‘package’, ‘can’, ‘bottle’, ‘box’, ‘prod-
uct’, ‘jar’). For this last set of classes, we made them available under
one super-class called ‘grocery item’ for flexibility. New models can
easily be added to ProgramAlly as it searches the dictionary for the
appropriate model when running a program.

In addition to recognizing objects, ProgramAlly also detects text
with iOS’s native text recognition. Programs can include the item
‘any text’, but can also include various more specific types of text
such as ‘address’, ‘email’, ‘phone number’, ‘date’, etc. These types
can all be used within programs, for example, ‘find ADDRESS
on PACKAGE’. These text types are detected by a combination of
Google’s Entity Extraction API [22] and regex functions.

Finally, adjectives in ProgramAlly are then used to further filter
object or text results. Adjectives include color (red, blue, etc.), size
(largest, smallest), and location (center, upper left, etc.). These can
be used alongside any item, for instance in the program ‘find

LARGEST TEXT on BLUE SIGN’. Adjectives in ProgramAlly were
implemented natively: color is detected by matching the most com-
mon pixel colors within an object’s bounding box to a set of strings;
size is determined by comparing an object’s bounding box to others
of its type and then filtering for the lower or upper quartile; and
item location is determined based on a quadrant system, breaking
down the parent object (either the image frame or a bounding box)
into sections to label the location of a child item (i.e., “text on upper
left”). While these implementations are naive, they are meant to
demonstrate that a variety of sources of classification can be used
in ProgramAlly, and could eventually be replaced by more robust
models or algorithms.

3.2.4 Program Output. While running programs, ProgramAlly
keeps track of where target items were found in order to give
context for each piece of information. For example, if two buses are
found in the frame, the output could be: “Found number 73 on bus,
left of frame, found number 21 on bus, right of frame.” This system
also tracks where the program failed if the target was not found. If
the first item in the program is not found, ProgramAlly will attempt
to provide output for the second item, and so on. For example, if a
bus is found with no number on it, the output would be, “Found
bus, no number.” In this case, because ‘number’ results are filtered
from the more general text detection model, ProgramAlly would
also read strings that are not numbers as a backup, for example, the
route name. Unique messages are generated for each failure point,
for example, if no buses are found (“No bus found”), or if a bus is
found but the adjective does not match (“Found white bus, no red
bus visible”). This information is used to provided helpful backup
information for understanding the scene and aiming the camera.

2. Programming Interfaces 1b. Running Programs

ProgramAlly
block-based
programming

programming by
example

natural language
programming

list all
possible
nodes

generate scene
graph from

frames with key
node

reconstruct
program

few-shot prompting
GPT-4

1a. Program Representation

3. Program Generation Server

find ADJECTIVE TARGET on ADJECTIVE TARGET

(color, location, size) (text, objects)

find NUMBER on BUS

1. find BUS 2. find NUMBER

“Found number: 525”

“Found number: 30”

Figure 2: ProgramAlly’s main components: (1a) An underlying program representation, the framework for running visual
filtering programs (1b). (2) A set of three, multi-modal programming interfaces to support programmers with different levels
of expertise. (3) A program generation server which synthesizes filtering programs from images or natural language.

3.3 Block-Based Programming Mode
ProgramAlly’s first method for creating new filtering programs
is a block-based programming interface, shown in Figure 1. This
block mode can be used to create a program from scratch, or to edit
a program that was generated automatically by one of the other

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

two methods. When first creating a new program, the authoring
interface will display a program with two empty items in order to
provide a default structure for users to fill in. There are two sections
of this interface. First, a heading called ‘Program Summary’, which
includes a natural language summary of the implemented program
for users to refer back to as they edit. For the default program, this
will initially read, “Find any object on any object”, and will update
as users fill in the program with their desired items.

Next, under a heading called ‘Edit Program Directly’, users can
read through each statement in the program, and edit them with
actions in VoiceOver. For example, when VoiceOver focus is on the
first ‘find’ statement, it will announce: “Find any object, actions
available: Edit adjective, Edit object, Delete this item.” If parameters
for the item have already been selected, the VoiceOver description
changes to reflect what has been chosen. For example, for the state -
ment ‘find RED BUS’, the description would be: “Find red bus,
actions available: Edit adjective ‘red’, Edit object ‘bus’, Delete this
item.” Grouping these together as one single element with multi-
ple actions, rather than having ‘edit adjective’ and ‘edit object’ as
separate VoiceOver elements, is meant to clarify that the different
parameters in the ‘find’ statement are functionally related, without
relying on the visual aspect of them each being on one line (D3:
Accessibility). This design was also based on the VoiceOver expe-
rience of Apple’s Shortcuts app [1], where each block is read as a
separate element and editing parameters can be similarly accessed
through actions. When either of the edit actions are activated, a
new page will appear listing the possible adjectives or objects to fill
in the program (shown in Figure 1). The menu includes buttons that
can be used to filter the items by type, or a search bar for finding a
specific item.

3.4 Natural Language: Question Mode
Inspired by natural language programming approaches, Progra-
mAlly includes ‘Question Mode’, which generates a program from
a question or statement (D2: Approachability). Users can type or
dictate a question, and the resulting program will appear in the
block-based interface for them to review and refine further. For
instance, the query, ‘What does this bottle say?’ would result in
the generated program: ‘find ANY TEXT on BOTTLE’. This result
could then be modified with a follow up question: ‘Actually, just
read the biggest text’ changes the program to ‘find LARGEST TEXT
on BOTTLE’.

To prototype this interaction, we use a few-shot prompting ap-
proach with GPT-4. We provide a custom system prompt describing
how to extract items, and listing the possible item classes. Then, we
provide a set of approximately 20 queries and their correct JSON
program representation that we wrote based on examples from
accessibility datasets [24, 26]. Without developing a custom en-
tity extraction workflow, we found that this approach works well.
However, GPT-4 will sometimes produce errors. The most common
issue is the model hallucinating new object classes. In this case,
the block interface will alert the user that there is an unsupported
field and open the editing menu for users to select an alternative.
The model very rarely produces programs with an incorrect struc-
ture. If the model fails to extract entities, which can happen if the
question is vague (e.g., “What is this?”) it will occasionally respond

with natural language rather than a program (e.g., “I’m sorry, I
don’t know what you mean, can you clarify?”). Future work could
use additional fine-tuning to create a conversational approach to
clarifying ambiguous language.

ProgramAlly also includes a method for users to edit programs
with a follow-up question, rather than by manually editing a gener-
ated program using the block-mode. When editing a generated or
pre-existing program, there is a text box where users can type or
dictate a follow-up question (Figure 1). Various follow up questions
are included in our system prompt to GPT. Based on feedback in
our formative studies, we also included an option to access this
feature while a program is running. If the program output is not as
expected, users can directly access the option to edit the program
with natural language, for rapid iteration. For example, when run-
ning the program ‘find NUMBER on BUS’, the user could provide
the statement, “Read the route name instead”, and the program
would be modified to be ‘find TEXT on BUS’.

root

bus sign

“30” “JACKSON RD.”“525”“30”

bus

root

find NUMBER on BUS

1. Frame is used to generate tree

2. Selected item is used to choose
a branch

3. Branch becomes program

1

2

3

1

2

Figure 3: In explore mode, ProgramAlly provides a list of all
items detected in the camera feed. Users then demonstrate
filtering by choosing a specific item. That item is then used
to fetch a specific branch from a scene hierarchy, which be-
comes the program.

3.5 Programming-By-Example: Explore Mode
ProgramAlly’s Explore Mode allows users to automatically generate
a program by selecting a target feature detected in the camera feed
(D2: Approachability). Explore mode lists all object and text features
in the image, and users select an item to filter for, effectively pro-
viding a demonstration of the filtering behavior. Explore mode was
included to address the challenge of unknown-unknowns [7]: with-
out knowing what visual features or information is present, blind
users would not necessarily have all of the information available to
write a working filtering program.

In this mode, ProgramAlly runs all object and text detection
models at once, with the goal of outputting everything that a user
might want to create a program to find. Users then select the in-
formation they are looking for to demonstrate filtering behavior,
and a program is generated which aims to filter for that type of
information in the future. For example, as shown in Figure 3, the
camera is pointing at a bus stop. If the user selects ‘30’, which is

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

a route number, the resulting generated program will be ‘find
NUMBER on BUS’, because that is where the text ‘30’ was found
in the frame. Once a program is generated, the app again displays
the result in the block-based interface, with the program summary
and the option to edit the generated program further either with a
question or with blocks.

3.5.1 Generating Programs from Demonstrations. Programs are
generated using ProgramAlly’s server, which represents images as
a tree of items. First, on the device, ProgramAlly maintains a list
of each frame where an item was detected. When the user selects
an item, a frame is then chosen that contains that item, which is
then sent to the generation server. ProgramAlly’s server uses a set
of models to then generate the tree structure. These are slightly
different than the models used on device, and includes Mask R-CNN
under Detectron2 [45] and Google’s Cloud Vision API [15] for object
detection and Google Cloud’s OCR model [14] for text. Additionally,
to label adjectives and other properties associated with each item,
the server runs DenseCap [31], a model that creates rich language
descriptions of image regions. Because DenseCap produces natural
language descriptions associated with bounding boxes, we use a
few-shot prompting approach to GPT-4 [58] to extract and label
the relevant objects and their associated adjectives.

Next, each item is stored as a node in a scene graph hierarchy
based on bounding box overlap. The parent node is the entire image,
and child nodes can either be text or objects, stored with their
associated adjectives. Finally, from this scene graph, the originally
selected node is then used to generate a program. The selected
node is located in the scene graph, and all of its ancestor nodes (not
including the root image) are then selected, representing a branch of
the graph (see Figure 3). Traversing up this branch, each node then
becomes an item in the program. Each node in this set is converted
into an adjective and object pair, and ordered based on their parent-
child relationship in the source graph. This generated program
is then sent to the device as JSON. While ProgramAlly currently
uses a strict tree structure to avoid any ambiguity (ensuring that a
single branch can always be chosen), this does limit this generation
technique to supporting only the current ‘find’ and ‘on’ operators.
To support more complex programs, new synthesis techniques
would need to be developed.

Because the server includes the addition of DenseCap for de-
scribing objects, there may in rare cases be a class in the generated
program that is not present in the app, although we aim to filter
these classes out when possible. In this case, the block interface
will again alert the user that the field is unsupported and surface
the menu for selecting a replacement.

4 USER STUDY PROTOCOL
To understand how ProgramAlly can be used as a tool for creating
and customizing assistive technology, we conducted a study with
12 blind participants. Our goals were to (1) assess the accessibil-
ity and approachability of ProgramAlly, and (2) understand
unique challenges faced by blind end-user developers creat-
ing visual technology. This study was approved by our Institu-
tional Review Board (IRB). Participants were compensated $25 per
hour for their time and expertise. This ranged from 1.5 to 3 hours
in total, with an average time of 2 hours.

We aimed to involve participants in ProgramAlly’s design, so the
first four participants were consulted as it was being developed and
informed many of its final features. Because these participants also
completed a similar study protocol as the remaining participants, we
include their results here as well. Overall, this study was completed
with three groups of participants:

(1) Pilot Participants: Four remote participants who tested
ProgramAlly as it was being developed. The first two partic-
ipants only used the block-based programming mode, and
the second two participants used all three modes.

(2) Remote Participants: Four remote participants who com-
pleted a full evaluation of ProgramAlly, running filtering
programs on sample images.

(3) Face-To-Face Participants: Four in-person participants
who completed a full evaluation of ProgramAlly, running
filtering programs on provided props and comparing filters
to existing assistive apps.

4.1 Participants
Participants were recruited using email lists for local accessibility
organizations, prior contacts, and snowball sampling. Participants
were required to be over 18 years old, have some level of visual
impairment, and regularly use a screen reader to access their devices.
Participants were also required to have an iPhone so that they could
download ProgramAlly via TestFlight.

Demographic information for participants is shown in Table 1.
Of the 12 participants, two had some prior programming experi-
ence for their coursework or career. However, participants had a
range of experiences with technology and VoiceOver, and not all
were experts. For example, R2 and R4 were assistive technology
professionals, while F2 was new to using VoiceOver and had not
previously used any mobile assistive applications. We recognize
that recruiting remote participants can create a bias for people who
are technically savvy, as they need to have a desktop and be famil-
iar with Zoom. To try diversifying our sample, we also recruited
in-person participants.

(a) (b) (c)

(c)

Figure 4: Samples of props used in our study: (a) Grocery
props for in-person testing of ‘find DATE on GROCERY ITEM’,
(b) Mail props for in-person testing of ‘find ADDRESS on
PACKAGE’, (c) Images used by remote participants, for testing
‘find NUMBER on BUS’ and ‘find PERSON on BENCH’.

4.2 Procedure
After a brief introductory interview, participants were introduced
to ProgramAlly by reading through a pre-written program to fa-
miliarize themselves with the concept and interface. Participants

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

were then asked to modify the example program slightly by adding
an adjective. We tried to keep verbal instructions minimal to let
participants reason for themselves about the program. The only
pointer that we gave to participants was that they could swipe
up or down on the program elements to hear the different editing
actions available, because depending on the verbosity settings of
their device, VoiceOver may not have spoken this information.

After this introduction, participants then used ProgramAlly
to create and run three programs. Participants used each of the
three programming interfaces (block mode, explore mode, ques-
tion mode), and were assigned tasks to create a program for (i.e.,
‘create a program that will find addresses on mail’). While creating
each program, participants were prompted to think aloud to ex-
plain their thoughts or concerns, or to ask questions. Participants
then ran the programs they created, with remote participants us-
ing sample images and in-person participants using props. These
props included books, grocery items, and packages and mail, and
examples are shown in Figure 4. In-person participants were also
given the option to compare their program to either Be My AI or
Seeing AI, depending on what they would normally use for the
same task. After creating each program, participants were asked to
rate the ease of creating the program, and how accurate they felt
the program was.

Finally, participants were asked to rank the three creation modes
on different factors. The study concluded with an open-ended inter-
view about the prototype app and the experience of using end-user
programming methods for DIY assistive technology overall. Partic-
ipants were asked to imagine how such an app could fit into their
existing assistive technology workflows, and the pros and cons of
creating programs to customize assistive technology.

ID Gender Age Occupation Vision and Hearing Level
P1 Man 22 Computer science university student Blind with no light perception, from age 5

P2 Woman 54 Not employed Blind with some light perception, from age 49

P3 Man 29 Graduate student Blind with some light perception, from birth

P4 Woman 32 Program Director Blind with some light pereption, from birth

R1 Woman 41 Translator Blind, from birth

R2 Man 37 Accessibility consultant Blind, from birth progressive up to age 15

R3 Woman 68 Retired Blind with some light perception, progressive since birth

R4 Man 41 Assistive technology research and training specialist Blind with no light perception from birth. Deaf/ hard of hearing.
F1 Woman 53 Not employed Blind with no light perception, from age 51

F2 Woman 60 Retired teacher Blind/ low vision, 20/500, from age 27

F3 Man 40 N/A Blind with some light perception, from birth. Slightly hard of hearing.
F4 Woman 72 Retired social worker Blind with some light perception, from age 23

Table 1: Participant demographics for our study with 12 visually impaired people. Participants self-described their level of
vision. All participants used a screen reader to access their devices and read text. Participants with a ‘P’ were part of the
pilot testing, participants with an ‘R’ completed the full study remotely, and participants with an ‘F’ completed the full study
face-to-face.

4.3 Data Collection and Analysis
Remote participants joined a Zoom call that was recorded, and
when testing the app they were asked to share their phone’s screen
in the call. Similarly, the face-to-face participants interviews were
audio recorded, and their devices were screen recorded. The audio
was later transcribed and used for analysis. We then created written

descriptions of participant’s strategies for completing each tasks
from the video data.

Since participants were encouraged to use a think-aloud method
and take their time to fully explore the functions, ask usability
questions, and give feedback, performing an analysis of task com-
pletion time does not provide much insight about how ProgramAlly
works in practice. Instead, we primarily report qualitative data on
participants’ strategies and workflows while using ProgramAlly,
and their general feedback.

5 USER STUDY RESULTS
Here we present results from our user study. First, we discuss par-
ticipants’ experiences creating and running programs in general.
Next, we discuss how participants used and compared each of the
three program creation modes. Finally, we discuss participants im-
pressions of end-user programming as a customization tool.

5.1 Using Filters in ProgramAlly
Participants generally felt positively about using filtering programs
in ProgramAlly. As P1 described: “There is an abundance of visual
information. And sometimes a blind person is short on time, and you re-
ally just want the particular piece of information you’re curious about”
(P1). Not all of the example filtering programs were equally useful
to participants. For example, R1 appreciated the ‘find PERSON on
BENCH’ program and envisioned using it in a local park with many
benches, while R3 had a seeing eye dog already trained to do this
task. All participants saw practical use in at least one of the filters
they tried, and all were able to come up with ideas for filters they
could create in the future.

5.1.1 Benefits of Filtering. Almost all participants saw filtering as
an important niche not filled by existing assistive technology. As
R3 described: “I definitely see a use for this app. Earlier I mentioned
that I usually think, ‘I already have 3 apps that do the same thing.
Why do I need another one?’ But this one, because of the ability to
filter, you know, as much as you want to, you can get very specific, I
don’t think anything like that exists. Or maybe it exists in a 5 step

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

process” (R3). Similarly, R4 mentioned how filtering could speed
up some tasks: “I think it’s the next natural direction to go in, in
some ways, sometimes you get a bit too much information and you
can speed up the process by not having it automatically generate an
image description that you might not even have any use for” (R4).

Participants expressed that filtering seemed particularly useful
for tasks that were repeated as part of their routines. F2 said, “I
probably would save some [programs] to the library. Because some
stuff I would probably use over and over again” (F2). In routine tasks,
efficiency can be more crucial. F3 said, “Well, it depends on your
routine, you know. If you have something that you do on an ongoing
basis, and you really need this life hack, say, to make it real simple for
you, then absolutely” (F3). Participants were also able to envision
creating new filters outside of the ones prompted in the study. A
list of examples is shown in Table 2.

ID Program Idea

P1, F2 Identify products by brand or flavor when sorting, find BRAND
NAME* on GROCERY ITEM

P3 Find cooking instructions, find TEXT AFTER "COOKING
INSTRUCTIONS"* on GROCERY ITEM

P3 Sort credit cards, find NAME* on CREDIT CARD*

R3, F3 Organize books and CDs, find "AUTHOR NAME"* on BOOK

R4 Find room number in hotel, find NUMBER on SIGN

F3 Identify car models, find MAKE/MODEL* of CAR

F4 Differentiate between two cats, find ORANGE CAT

Table 2: Participants envisioned creating new filtering pro-
grams outside of those they used in the study, sometimes
involving new classification models (marked with a *). A sam-
ple of these ideas are shown here.

5.1.2 Comparing ProgramAlly to Other Assistive Technology. In-
person participants were able to directly compare filtering programs
they made to other automated assistive apps of their choice. In
general, participants preferred using the filters they wrote over
Seeing AI for the same task. For example, F2 reflected on the ‘find
ADDRESS on PACKAGE’ program: “The filter, I think, did center just
on the address. It read it one time, and I knew where the start and finish
was. In Seeing AI, it seemed like it would keep reading and reading
and reading... I would have to listen to it twice to make sure I got the
full address, So that’s why I slowed it down, because I really had to pay
attention where the start of the address was and what it was telling
me” (F2). Here, when F2 used Seeing AI to read a shipping label,
it read additional extraneous information aside from the address
that they then had to manually sort through, to the point where
they reduced VoiceOver’s speaking rate to listen carefully for the
information. Similarly, F1 and F3 preferred the ‘find DATE on
GROCERY ITEM’ program over Seeing AI, as Seeing AI never read
an expiration date, it just read other information on the product
package, despite the date being in frame.

Participants preferred Be My AI for some tasks, but not all of
them. For example, F4 compared the ‘find DATE on GROCERY
ITEM’ to Be My AI. After trying multiple times, they were unable
to take a photo for Be My AI with the expiration date in frame,
and gave up. On the other hand, participants tried a filter ‘find
LARGEST TEXT on POSTER’, which was created imagining a sce-
nario where someone would want to skim over fliers on a bulletin

board. Participants though Be My AI was better suited to this task,
as it was easy to feel a flyer to center it in the frame, read the first
line of the output description, and disregard the rest. This confirms
our hypothesis that ProgramAlly is better suited to tasks that are
continuous or repetitive, where taking a single photo is difficult.

5.2 Programming Process and Challenges
Most participants felt like with practice, they could become more
familiar with the system and would be able to quickly create new
programs. However, as blind end-user developers they also faced
unique programming challenges.

5.2.1 Programming with Unknown Unknowns. One such challenge
is not knowing what the ‘ideal’ program would be due to not know-
ing the parameters or targets included in the system. While this
is a challenge for many end-user programming tools [35] and can
be alleviated with more familiarity, R3 pointed out that this is also
tied to prior visual ability: “I’m gonna point out that, depending on
your onset of blindness, you might not know what questions to ask.
So it’s going to depend on the user and their life experiences... Because
their experiences, haven’t you know, given them the ideas of how to
word a question” (R3).

To potentially address this, R3 imagined follow up information in
the example and question modes that would help them understand
the possible programs better. They said, “If there were things about
this object that I wanted to know, but I didn’t know that they’re there,
then there are questions that I’m not coming up with that would
help me. So you know, in that respect, if the app gave me suggestions
like, ‘Why don’t you ask it this?’ It might help you get to your final
question” (R3). Explore mode in particular could be improved by
listing possible programs, rather than only listing possible features
of interest.

5.2.2 Understanding Object Classes. Even when participants were
aware of a possible object class, they often wondered about the
extent of what it would detect. For example, P1 questioned the
program ‘find DATE on BOTTLE’: “I don’t know if it’s super re-
stricted to a specific definition of a bottle, or pretty much any box or
container. Could it also work with a box of cereal, which also has an
expiration date on it? A cereal box can hardly be, in colloquial terms
described as a bottle. But from the AI’s perspective, I wouldn’t be too
surprised” (P1). The ability to test classes in isolation, outside of a
filtering program, could be helpful in determining the applicability
or reliability of a class.

5.2.3 Balancing Specificity and Reusability. Participants thought
carefully about how to produce filters that were specific enough to
be useful, but generalizable enough to be re-usable. For example,
when writing the ‘find DATE on GROCERY ITEM’ program, R2
noted that there may be both an expiration date and sell-by date
on an item. They said, “I guess with any of these filters is like, do
you go broad, or do you go narrow? And I think ‘any date’ works,
with the knowledge that there are likely to be multiple dates available.
That’s not to say that I won’t find the right information, but it just
might find additional information that I didn’t want” (R2). This is
also somewhat dependent on prior visual ability, as someone with
prior sight may be able to recall specific visual features that could
cause conflicts in their filters.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

Using only a single object detection class in a program could
also limit its re-usability. For example, when reading the program
‘find ADDRESS on PACKAGE’, F4 noted they would want it to run
on not just packages, but also on envelopes, mailers, or similar
items. Creating new super-classes by grouping relevant items could
improve the robustness of possible filters.

R4 noted that balancing program specificity could become more
difficult when they were outside of their normal routine: “For ex-
ample, in a situation where maybe I am trying to find a specific bus, I
want to be able to quickly do that. So I would pre-write the program.
But like, I could show up in a city next week, and not be there again
for 3 years, so there would be no point in me generating different
programs based on that. So it’s faster to just ask the question. But you
know, in other situations, when I might have a little more time to put
it together, or things like that, it seems like the other methods are a
bit more accurate” (R4). Here, they described how if they needed
a filter outside of one that they would typically use, they could
quickly create one by asking a question, rather than spending time
to carefully set up something they may only use a handful of times.

5.3 Creating Programs with Blocks
ProgramAlly’s block-based programming interface has the advan-
tage of offering more fine-grained control over a program, but it
also has the highest learning cost. However, participants expressed
that this was something they felt confident in being able to learn
over time as they created new filters.

5.3.1 Advantages: Control and Accuracy. Participants found that
this mode produced programs that most accurately matched their
intents because they could quickly specify exactly what information
they wanted: “I think this produces the most consistent accuracy,
knowing if you can go in there and just select things” (F1). They also
observed that this mode reduced some of the ambiguity present
when a program was automatically generated for them: “I would say
it’s the least difficult way, just because you know kind of what you’re
getting, and you know what’s available” (R2). Here, R2 is describing
that when they already had a program in mind and knew the format,
it was easier to program it directly than it was to think about how
to phrase it in natural language.

5.3.2 Learning to Think Programatically. The block-programming
mode required participants to adopt a programming mindset and
break down an idea into multiple components. For example, par-
ticipants sometimes added items in the wrong order. P3 wrote the
program ‘find BUS on NUMBER’, and described their thought
process as “I was thinking, okay, first I need to look for a bus. That’s
the most important thing. So putting that first... I was going through
a more like, linear process, you know, look for the bus then look for
the number. But that’s just like how the brain works. But if I had
paid more attention to what it was saying...” (P3). R2 also noted
that it took some extra thought to consider how the scene would
visually appear: “For me, I was just thinking about it in terms of
like, if you’re looking for two objects which is going to be visually
larger and easier to discover” (R2). They then realized that they had
put the elements in the wrong order when they went back to read
the program summary: “This particular field helps me to determine

which order I should put things. So I see that I said, ‘find any bench
on any object’. So I actually want to find ‘any person’ first” (R2).

Additionally, when parameterizing their request participants
were sometimes unsure if an item they wanted to add would be
considered an adjective or an object. R3 wanted to add the adjective
‘red’ to an existing statement that said ‘find any book’, but they
selected ‘edit object’ because they wanted to edit how the book
was detected: “Cause I was like, ‘adjective’? I mean, I know what an
adjective is, but I wasn’t like relating it to ‘red book”’ (R3). Similarly,
F3 described, “It’s like I have to fill in these categories. And I have to
think about which category is which. I have to think why adjectives,
and why objects and things, and it’s interesting” (F3).

5.3.3 Challenge: Interface Complexity. The block-based program-
ming mode has more interface elements, which participants recog-
nized as a learning curve. Additionally, even once familiar with the
interface, there is still a time cost to creating longer or more complex
programs where many components need to be edited. R2 described:
“So the disadvantage, of course, is like having to go through the whole
process, which can be as long or short as necessary. It’s the one that
has the most, I would say, interaction cost in terms of just having
to touch your device and manipulate the interface” (R2). Creating a
long program like ‘find TEXT on LICENSE PLATE on CAR, find
COLOR on CAR’ would take more time than creating the program
‘find PHONE’, simply because there are more parameters.

5.4 Generating Programs from Questions
Participants considered question mode to be the fastest way to
get started making programs. However, the generated programs
sometimes did not capture the correct parameters.

5.4.1 Advantages: Fast and Approachable. Many participants pre-
ferred the natural language mode because it was fast, and required
the least cognitive effort. As R4 described: “It’s faster, overall like,
you don’t have to break it down and add an adjective, or add this
or that. You just have to have it categorize things correctly, which
it seems like it mostly does” (R4). Even if the generated program
was not exactly as intended, participants felt that they could use
it as a starting point for editing (either with blocks or follow-up
questions). For example, F3 said, “I feel like I’m more in control of it.
I can be just type in what I want, and then customize it from there. It
just seems more straightforward to me to interact that way” (F3).

5.4.2 Challenge: Language Can Be Vague. Participants felt that
sometimes the generated programs did not capture their full intent.
R3 described how this could be due to ambiguities in natural lan-
guage, comparing how they would phrase a program for finding
dates versus one for finding bus routes: “I mean a date is a date.
There’s no leniency. But if you’re asking for a bus route, do you mean
the number of a route or the label of a route?” (R3). Because of this,
some participants spent time thinking about exactly how to phrase
a question to get it to detect what they wanted. R1 noted that they
would rather edit the program directly than think about how to
phrase questions: “[In block mode], I can be more specific and I can
choose exactly what I want... Here, I don’t know, it’s still too difficult
to phrase. I need too much brain power” (R1). Participants also some-
times forwent natural language, and simply dictated a statement in

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

the program structure ("find blank on blank") to try to overcome
this.

0 11 22 33 445 5 6 7 8

Ea
se

Ac
cu

ra
cy

Overall Ease Accuracy

A: Programming Mode Likert Feedback B: Programming Mode Overall Rankings C: Programming Success

C
um

ul
at

iv
e

Ra
nk

in
g

Po
in

ts

Figure 5: Participants rated each of ProgramAlly’s three creation modes on a set of factors. Charts (A) and (B) demonstrate
the trade offs between block and question mode: question mode was found to be easiest, but block mode was perceived to be
slightly more accurate. Chart (C) demonstrates that block mode had the highest learning curve, though participants were able
to create correct programs with all three modes. Each mode may be suited to different users or scenarios.

5.5 Generating Programs from Examples
Participant appreciated the potential of explore mode to give them
a new awareness of visual features. But, in its current state, it was
difficult for participants to know what features to select, and the
generated programs sometimes contained unexpected conditions.

5.5.1 Advantages: Finding Unknown Features. Participants saw the
greatest strength of this mode as its potential to make them aware
of new features and program possibilities. “The summary gave in-
formation that I wasn’t even aware of. So in that respect it was good,
it was like ‘oh, buses are red, gotcha”’ (R3). “For like the odd situation,
you could use the explore option. And once you realize all of the details
that are out there, you could say, well, this is worth categorizing, and
I wanna be able to, you know, have a filter just based on stuff in the
environment that I didn’t know about. And I could actually see a
real need for the the explore mode over the [question mode], because
sometimes we don’t know what we’re working with in the field” (F3).

Additionally, P3 pointed out that it was a useful way of testing
the object detection would work on a specific item before manually
writing a program for it. “For example, if there is some item, let’s say
medicine, or a bottle of milk or something that you consume every
day. You don’t know if the app would recognize that particular milk
or not. So rather than try to create a program and try my luck, I can
test it out directly. And if it detects, then you’re cool, like, just create
a filter for the next time, you know, and keep it saved, and then you
can run it every time” (P3).

5.5.2 Challenge: Extrapolating Intent from a Single Feature. In ex-
plore mode, participants needed to pick a feature of interest, and
ProgramAlly generated a program based on finding that feature
in the future. Participants noted that it was hard to pick a target
without knowing what the resulting filter would be, and without

knowing the context of some visual features. For example, when
trying to generate a program that would read the route number on
a bus, some participants debated between choosing the object ‘bus’
or the number ‘73’, both of which appeared as possible targets.

The program generation method we developed attempted to
create filters to match specific visual content, though participant
feedback revealed that one generation method is not suited to all
tasks, and ProgramAlly may be including too many visual features.
For example, R3 reasoned about why a generated filter included the
adjective ‘red’: “Maybe the bus in the image was red, but no it doesn’t
seem relevant to the route number. It probably did the right thing, it
probably filtered it. Maybe all 73 buses are red. So it might have done
the job that it was supposed to do, and not the job that I wanted it to
do” (R3). F4 similarly noted that different features are relevant for
different tasks. They generated a program by selecting ‘book’ as
the target, and the result was ‘find blue book on table’: “You know
you may be looking for. The colors, you’re like, okay... When it comes
to a book, that’s not what I really need, because, like, when we look
for our books, we look by title and all, of course” (F4). Considering
these types of semantics when generating programs could improve
the results.

5.6 Comparing Creation Modes
Participants generally appreciated all three programming modes
were available in the app. An overview of how participants com-
pared the modes is shown in Figure 5. Each mode required partici-
pants to think about their goal in a new way, and required different
types of effort to turn it into an operable program. Parameteriz-
ing a request in block mode, selecting a visual feature in explore
mode, and phrasing requests in question mode each presented their
own strengths and challenges. Because of this, participants could
see benefits of using different programming interfaces in different
scenarios. As R4 put it: “It’s all contextual, I think. So it depends on
what you want to do. Like, we did 3 different examples. But I would

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

use different methods based on what I knew about the environment.
It just depends on what you’re doing, you know, if you already have
an image you’re working with. You might go with that particular
program, you know, you explore the image, and then that’s what you
use. It just really depends on the situation” (R4).

Participants also noted that the different modes could be helpful
to people with different levels of technical expertise. P3 said, “I think,
also, like, to the user, they’ll be scared, like, I have to do programming
to use the app... But I mean, anyone pretty much can do it, and there
are multiple ways, even if one method is gone. So there were two other
methods to create” (P3).

5.6.1 Structured vs. Unstructured Input. Despite question mode
seeming more approachable, block mode’s structure provided par-
ticipants a framework to work within. As P1 described: “I think one
positive is that it gives you more of a predetermined list to choose from.
So kinds of objects that you might be interested in, kinds of things
on those objects that you might be looking for. One of the challenges
with personalization is you can give someone too much choice to the
point that they are overwhelmed and unsure of where to even start”
(P1). This framework gave people an understanding of the limits of
what they could create.

To balance these approaches, multiple participants imagined
a hybrid block and natural language approach, where the block
structure would still be present, but they could type in or dictate
each program item instead of scrolling through menus. For example,
F3 described, “Maybe if the display were slightly different, like ‘find
any blank on any blank’, and I could input the text there, that would
make sense. But I’m trying to choose objects and adjectives and things
like that. And it just seems a little cluttered” (F3).

5.6.2 Editing Generated Programs. Participants generally appreci-
ated that the two program generation modes (explore mode and
question mode) displayed their results in the block interface, even
participants who did not prefer that interface to start. For instance,
F2 and F3 both preferred the generation interfaces, but agreed that
it was easier to edit an existing program than to create one from
scratch. Participants also expressed that they would use this inter-
face to refine the generated programs, as P4 said, “It’s always good
to have a backup there” (P4).

5.7 Benefits and Drawbacks of DIY-ing Assistive
Technology

Participants appreciated the deeper level of customization available
when programming filters as compared to current assistive tech-
nology. As R2 described, it puts power into the hands of the user
to decide what they needed: “I think it all comes down to providing
choice. Ultimately, what I like is that you’re putting the information
available, in the person’s hands to choose... You know, just being able
to empower people to be independent... What you’ve all created here
is really neat because it’s creating modularity to access the informa-
tion. And I love that. I love that. And I wish more and more assistive
technology companies thought about, how can we take these pieces
of information and put it in the hands of the people that need it in
a way that they can then modify it and change it and make it their
own” (R2).

On the other hand, R1 noted that having to put in the effort to
create filters themselves could be considered a burden: “People are
not developers. Another developer, I suppose, knows how to program. . .
I’m not a builder. There are tasks that are difficult for us to do, but
what, I have to spend 5 hours to tinker with a program for what?” (R1).
R1 expressed that they felt like ProgramAlly was a good option for
developers wanting to quickly create things, but that it may not
be ideally directed towards end-users. Other participants who did
not mind the idea of programming still mentioned that re-framing
the functionality might make ProgramAlly feel more approachable.
Eventually, ProgramAlly could be considered as a platform for
people to share programs that they have created, enabling a level
of collaboration among end-users with different levels of expertise.

6 DISCUSSION AND FUTURE WORK
We found that ProgramAlly addresses unmet needs, empowering
blind people to customize their experiences with AI. Here, we out-
line opportunities for building on ProgramAlly to further improve
its utility.

6.1 Raising the Ceiling of Creation Possibilities
Throughout our user studies and analysis of existing data, we en-
countered many scenarios that could be addressed by ProgramAlly
with the addition of new program operators. While ProgramAlly
was implemented with ‘find’ and ‘on’ statements for simplicity and
approachability, the addition of new operators could make Pro-
gramAlly more expressive for DIY enthusiasts and power users.
For example, the addition of traditional logical operators such as
AND, OR, and NOT would allow for a greater degree of specificity in
programs. However, AND and OR are easily confused among end-
users as their natural language counterparts can be ambiguous, so
introducing these would need to be done with care.

New operators could also define additional ways for objects
to interact with each other. Currently, ‘on’ denotes objects whose
bounding boxes are primarily overlapping. An operator like ‘nearby’
could specify items that do not overlap, but are in proximity. Simi-
larly, ‘following’ could specifically find text content after a phrase,
as in find TEXT following "EXP:" for more specifically finding
an expiration date. ProgramAlly as a system could be extended with
these, but it would require new block interface designs, a challenge
for approachability and accessibility.

Additionally, ProgramAlly could benefit from the inclusion of
additional, specialized models for certain tasks. For instance, a
model that detects the make and model of a vehicle for locating a
ride share, or text classification models that can filter out ‘brand
names’ or ‘flavors’ for shopping scenarios. One notable object class
missing in ProgramAlly is ‘digital display’, for reading screens on
thermostats, microwaves, or buses. We attempted to use YOLO-
World to detect this class, but found that it was not accurate enough
to be usable. Although we currently use customized YOLO-World
models on-device so the classes are pre-selected, YOLO-World was
built for the ability to add new classes in real-time. In the future,
when question mode extracts parameters from a request, the server
could automatically generate new YOLO-World models to fill in
gaps in the program as needed.

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

In the future, we imagine ProgramAlly being paired with other
personalization approaches to create a deeper level of customization.
For instance, if combined with the capabilities of teachable object
recognizers, users would not only be able to locate personal items,
but to integrate them into programs as a basis for further filtering
or automation. Overall, we also see ProgramAlly as going beyond
programming for visual information tasks. We believe our study
reveals important findings about how blind end-users program,
ideally leading to supporting more complex tools for people to DIY
a range of assistive technologies outside of filtering programs.

Furthermore, when the creation ceiling in ProgramAlly is raised
with things like additional operators and models, or if end-user
programming approaches are eventually used to create different
types of assistive technologies, this comes with a trade-off. Bal-
ancing this complexity with ease of use is a critical concern for
future accessibility work in this direction. For instance, although
ProgramAlly could eventually include a large library of models and
classes to detect, these could be activated selectively or as-needed
for different users or situations, making the system less overwhelm-
ing. Eventually, ProgramAlly could also make suggestions for how
to create or improve programs based on how a person uses the
system over time.

6.2 Automating Running Programs
Because of the long-tail problem, some of our participants saw
managing a library of programs as unwieldy. For example, R1 said,
“Would I have to program actions for all the objects in the world?” (R1).
P1 expressed a similar sentiment: “When it comes to just the variety
of information that anyone might be looking for, at any given point of
time... I don’t know. It just feels like there are so many permutations
and combinations here. So many ways in which humans may want
to query information that trying to build an even remotely compre-
hensive list of the more common categories of information seems like
an endeavor that’s really hard” (P1).

Being able to automate when programs are run could remove
some of this burden. For example, a ‘find ADDRESS on PACKAGE’
program could be automatically started whenever a package enters
the frame, on the assumption that the user is sorting mail. Or, like
other mobile automations, programs could be tied to a location. For
example, when a user arrives at a bus stop, the ‘find NUMBER on
BUS’ program could start.

6.3 Programming in the Age of VLMs
Although large vision language models (VLMs) are becoming more
powerful, they may not be a panacea, and making them truly ben-
eficial requires deep integration with the needs of blind people.
Despite the advantages of providing fully automated, subjective
descriptions, they also add new challenges for blind users to acquire
information. While this is still an area of active research, Massiceti
et al. found the CLIP-based models were up to 15% less accurate on
images taken by blind people [43]. Additionally, as hallucinations
seem to happen more often when describing complex scenes [41] or
when being asked a follow-up question (the model appears to sec-
ond guess itself), they could potentially arise more in accessibility
contexts.

Generally, this also calls back to the long lived direct manipula-
tion vs interface agents debate [60]; although there is an effort cost

to creating personalizations, there is also a cost when an intelligent
system assumes someone’s needs and gets them wrong. Although
they may appear at odds, we envision end-user programming as
a supplement, not a replacement for large VLMs. We envision the
two approaches complementing each other in the following ways:

Reducing hallucinations by breaking down problems. Pro-
grams can serve as a way to break down visual problems into smaller
pieces, avoiding complex questions that might cause models to fail.
Just as ProgramAlly crops each image frame to relevant object
bounding boxes when running programs, a cropped version of an
image could be passed to the VLM to query in a more constrained
way. For example, programs could contain subjective adjectives like
‘clean’ or ‘matching’. A VLM could be queried for these items in
a constrained way, the answer could be parsed and fed back into
the program. VLMs still are not good at reading large chunks of
printed text or reasoning about complex scenes, but if the input
and output were constrained then they may produce better results.

Balancing ambiguity in language and improving explain-
ability. As discussed in our study findings, language is ambiguous,
and programs can help articulate specific intents. Additionally, pro-
grams can serve as explicit step-by-step instructions of what a
system is doing to come up with a given answer. This could help
users better understand the limits of different tools, to better un-
derstand and predict why they fail.

Making large VLMs ‘live’ and creating reusable queries.
Current large VLMs take in a static image as input. Yet, as models
become faster, running a query on a live camera feed will not be as
simple as repeating the question on each frame. Because programs
specify what users want to hear and when, they could be used to
convert natural language responses into real-time feedback.

7 CONCLUSION
We have presented ProgramAlly, an end-user programming tool for
creating custom visual filtering programs. ProgramAlly implements
a set of programming interfaces: block-based, natural language, and
programming by example. Through a user study of ProgramAlly
conducted with 12 blind participants, we demonstrate the promise
of end-user programming approaches for creating and customizing
AI-based assistive technologies. We observed that users prefer dif-
ferent approaches depending on their experiences and the task, and
also note areas where blind end-user programmers may face unique
challenges while creating highly visual, camera-based technologies.
Overall, ProgramAlly is a step towards supporting blind people in
creating personally meaningful assistive technologies.

ACKNOWLEDGMENTS
We sincerely thank our participants for their time, and for sharing
their expertise and experiences. We also thank our reviewers for
their time and feedback. This research was supported in part by a
Google Research Scholar Award. This material is based upon work
supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-1841052. Any opinion, findings,
and conclusions or recommendations expressed in this material are
those of the authors(s) and do not necessarily reflect the views of
the National Science Foundation.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo

REFERENCES
[1] Apple. 2022. Shortcuts User Guide. https://support.apple.com/guide/shortcuts/

welcome/ios
[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[3] Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility
by demonstration: enabling end users to guide developers to web accessibility
solutions. In Proceedings of the 12th international ACM SIGACCESS conference on
Computers and accessibility. 35–42.

[4] Jeffrey P Bigham and Patrick Carrington. 2018. Learning from the front: People
with disabilities as early adopters of AI. Proceedings of the 2018 HCIC Human-
Computer Interaction Consortium (2018).

[5] Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller,
Robert C Miller, Robin Miller, Aubrey Tatarowicz, Brandyn White, Samual White,
et al. 2010. Vizwiz: nearly real-time answers to visual questions. In Proceedings
of the 23nd annual ACM symposium on User interface software and technology.
333–342.

[6] Jeffrey P Bigham and Richard E Ladner. 2007. Accessmonkey: a collaborative
scripting framework for web users and developers. In Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A). 25–34.

[7] Jeffrey P Bigham, Irene Lin, and Saiph Savage. 2017. The Effects of" Not Knowing
What You Don’t Know" on Web Accessibility for Blind Web Users. In Proceedings
of the 19th international ACM SIGACCESS conference on computers and accessibility.
101–109.

[8] Erin Brady, Meredith Ringel Morris, Yu Zhong, Samuel White, and Jeffrey P
Bigham. 2013. Visual challenges in the everyday lives of blind people. In Proceed-
ings of the SIGCHI conference on human factors in computing systems. 2117–2126.

[9] Danielle Bragg, Nicholas Huynh, and Richard E Ladner. 2016. A personalizable
mobile sound detector app design for deaf and hard-of-hearing users. In Pro-
ceedings of the 18th International ACM SIGACCESS Conference on Computers and
Accessibility. 3–13.

[10] Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J Chang, Megan Kelly Hof-
mann, Amy Hurst, and Shaun K Kane. 2015. Sharing is caring: Assistive technol-
ogy designs on thingiverse. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 525–534.

[11] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing distributed hierarchical web data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[12] Xiang’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian
Coros, and Scott E Hudson. 2016. Reprise: A design tool for specifying, generating,
and customizing 3D printable adaptations on everyday objects. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. 29–39.

[13] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying
Shan. 2024. YOLO-World: Real-Time Open-Vocabulary Object Detection. arXiv
preprint arXiv:2401.17270 (2024).

[14] Google Cloud. 2022. Optical Character Recognition (OCR) Vision API. https:
//cloud.google.com/vision/docs/ocr

[15] Google Cloud. 2024. Detect Multiple Objects. https://cloud.google.com/vision/
docs/object-localizer

[16] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

[17] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, and Subhajit Roy. 2016. Program synthesis using natural language. In
Proceedings of the 38th International Conference on Software Engineering. 345–356.

[18] Be My Eyes. 2024. Introducing: Be My AI. https://www.bemyeyes.com/blog/
introducing-be-my-ai

[19] Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S Weld. 2007. Automatically
generating user interfaces adapted to users’ motor and vision capabilities. In
Proceedings of the 20th annual ACM symposium on User interface software and
technology. 231–240.

[20] Bhanuka Gamage, Thanh-Toan Do, Nicholas Seow Chiang Price, Arthur Lowery,
and Kim Marriott. 2023. What do Blind and Low-Vision People Really Want from
Assistive Smart Devices? Comparison of the Literature with a Focus Study. In
Proceedings of the 25th International ACM SIGACCESS Conference on Computers
and Accessibility. 1–21.

[21] Alejandra Garrido, Sergio Firmenich, Gustavo Rossi, Julian Grigera, Nuria Medina-
Medina, and Ivana Harari. 2012. Personalized web accessibility using client-side
refactoring. IEEE Internet Computing 17, 4 (2012), 58–66.

[22] Google. 2024. ML Kit Entity Extraction API. https://developers.google.com/ml-
kit/language/entity-extraction

[23] Anhong Guo, Xiang ’Anthony’ Chen, Haoran Qi, Samuel White, Suman Ghosh,
Chieko Asakawa, and Jeffrey P. Bigham. 2016. VizLens: A Robust and Interactive
Screen Reader for Interfaces in the Real World. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16).
Association for Computing Machinery, New York, NY, USA, 651–664. https:

//doi.org/10.1145/2984511.2984518
[24] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman,

Jiebo Luo, and Jeffrey P Bigham. 2018. Vizwiz grand challenge: Answering visual
questions from blind people. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 3608–3617.

[25] Liwen He, Yifan Li, Mingming Fan, Liang He, and Yuhang Zhao. 2023. A Multi-
modal Toolkit to Support DIY Assistive Technology Creation for Blind and Low
Vision People. In Adjunct Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology. 1–3.

[26] Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo. 2023. Hacking,
switching, combining: understanding and supporting DIY assistive technology
design by blind people. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 1–17.

[27] Megan Hofmann, Jeffrey Harris, Scott E Hudson, and Jennifer Mankoff. 2016.
Helping hands: Requirements for a prototyping methodology for upper-limb
prosthetics users. In Proceedings of the 2016 CHI conference on human factors in
computing systems. 1769–1780.

[28] Amy Hurst and Shaun Kane. 2013. Making" making" accessible. In Proceedings of
the 12th international conference on interaction design and children. 635–638.

[29] Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with do-it-yourself
assistive technology. In The proceedings of the 13th international ACM SIGACCESS
conference on Computers and accessibility. 11–18.

[30] The Smith-Kettlewell Eye Research Institute. 2024. The Blind Arduino Project.
https://www.ski.org/projects/blind-arduino-project

[31] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016. DenseCap: Fully Convolu-
tional Localization Networks for Dense Captioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[32] Hernisa Kacorri. 2017. Teachable machines for accessibility. ACM SIGACCESS
Accessibility and Computing 119 (2017), 10–18.

[33] Hernisa Kacorri, Kris M Kitani, Jeffrey P Bigham, and Chieko Asakawa. 2017.
People with visual impairment training personal object recognizers: Feasibility
and challenges. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. 5839–5849.

[34] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. 2011. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 1–44.

[35] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199–206.

[36] Varsha Koushik, Darren Guinness, and Shaun K Kane. 2019. Storyblocks: A
tangible programming game to create accessible audio stories. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[37] Stacey Kuznetsov and Eric Paulos. 2010. Rise of the expert amateur: DIY projects,
communities, and cultures. In Proceedings of the 6th Nordic conference on human-
computer interaction: extending boundaries. 295–304.

[38] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[39] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile UI action sequences. arXiv preprint
arXiv:2005.03776 (2020).

[40] Henry Lieberman. 2001. Your wish is my command: Programming by example.
Morgan Kaufmann.

[41] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang,
Liping Hou, Rongjun Li, and Wei Peng. 2024. A survey on hallucination in large
vision-language models. arXiv preprint arXiv:2402.00253 (2024).

[42] Google LLC. 2022. Google Assistant. https://play.google.com/store/apps/details?
id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1

[43] Daniela Massiceti, Camilla Longden, Agnieszka Slowik, Samuel Wills, Martin
Grayson, and Cecily Morrison. 2023. Explaining CLIP’s performance disparities
on data from blind/low vision users. arXiv preprint arXiv:2311.17315 (2023).

[44] Janis Lena Meissner, John Vines, Janice McLaughlin, Thomas Nappey, Jekaterina
Maksimova, and Peter Wright. 2017. Do-it-yourself empowerment as experi-
enced by novice makers with disabilities. In Proceedings of the 2017 conference on
designing interactive systems. 1053–1065.

[45] Meta. 2024. Detectron2. https://cloud.google.com/vision/docs/ocr
[46] Microsoft. 2021. Seeing AI. https://www.microsoft.com/en-us/ai/seeing-ai
[47] Microsoft Research. 2021. Microsoft Soundscape – A map delivered in 3D sound.

https://www.microsoft.com/en-us/research/product/soundscape/.
[48] Siti Nor Hafizah Mohamad, Ahmed Patel, Rodziah Latih, Qais Qassim, Liu Na,

and Yiqi Tew. 2011. Block-based programming approach: challenges and benefits.
In Proceedings of the 2011 international conference on electrical engineering and
informatics. IEEE, 1–5.

[49] Farhani Momotaz, Md Touhidul Islam, Md Ehtesham-Ul-Haque, and Syed Masum
Billah. 2021. Understanding screen readers’ plugins. In Proceedings of the 23rd
International ACM SIGACCESS Conference on Computers and Accessibility. 1–10.

https://support.apple.com/guide/shortcuts/welcome/ios
https://support.apple.com/guide/shortcuts/welcome/ios
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/object-localizer
https://cloud.google.com/vision/docs/object-localizer
https://www.bemyeyes.com/blog/introducing-be-my-ai
https://www.bemyeyes.com/blog/introducing-be-my-ai
https://developers.google.com/ml-kit/language/entity-extraction
https://developers.google.com/ml-kit/language/entity-extraction
https://doi.org/10.1145/2984511.2984518
https://doi.org/10.1145/2984511.2984518
https://www.ski.org/projects/blind-arduino-project
https://play.google.com/store/apps/details?id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1
https://cloud.google.com/vision/docs/ocr
https://www.microsoft.com/en-us/ai/seeing-ai
https://www.microsoft.com/en-us/research/product/soundscape/

ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

[50] Cecily Morrison, Martin Grayson, Rita Faia Marques, Daniela Massiceti, Camilla
Longden, Linda Wen, and Edward Cutrell. 2023. Understanding Personalized
Accessibility through Teachable AI: Designing and Evaluating Find My Things
for People who are Blind or Low Vision. In Proceedings of the 25th International
ACM SIGACCESS Conference on Computers and Accessibility. 1–12.

[51] Brad A Myers, Amy J Ko, and Margaret M Burnett. 2006. Invited research
overview: end-user programming. In CHI’06 extended abstracts on Human factors
in computing systems. 75–80.

[52] Massachusetts Institute of Technology. 2024. Scratch. https://scratch.mit.edu/
[53] Maulishree Pandey, Sharvari Bondre, Sile O’Modhrain, and Steve Oney. 2022.

Accessibility of UI Frameworks and Libraries for Programmers with Visual Im-
pairments. (2022), 10.

[54] Venkatesh Potluri, John Thompson, James Devine, Bongshin Lee, Nora Morsi,
Peli De Halleux, Steve Hodges, and Jennifer Mankoff. 2022. Psst: Enabling blind
or visually impaired developers to author sonifications of streaming sensor data.
In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. 1–13.

[55] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swami-
nathan, and Gopal Srinivasa. 2018. Codetalk: Improving programming environ-
ment accessibility for visually impaired developers. In Proceedings of the 2018 chi
conference on human factors in computing systems. 1–11.

[56] Ravihansa Rajapakse, Margot Brereton, Paul Roe, and Laurianne Sitbon. 2014.
Designing with people with disabilities: Adapting best practices of DIY and
organizational approaches. In Proceedings of the 26th Australian Computer-Human
Interaction Conference on Designing Futures: the Future of Design. 519–522.

[57] Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. 2023. Real-Time
Flying Object Detection with YOLOv8. arXiv:2305.09972 [cs.CV]

[58] GPT-4 Technical Report. 2023. OpenAI. https://openai.com/research/gpt-4
[59] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers

of end users and end user programmers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05). IEEE, 207–214.

[60] Ben Shneiderman and Pattie Maes. 1997. Direct manipulation vs. interface agents.
Interactions 4, 6 (nov 1997), 42–61. https://doi.org/10.1145/267505.267514

[61] David Sloan, Matthew Tylee Atkinson, Colin Machin, and Yunqiu Li. 2010. The
potential of adaptive interfaces as an accessibility aid for older web users. In
Proceedings of the 2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A). 1–10.

[62] Abigale Stangl, Nitin Verma, Kenneth R Fleischmann, Meredith Ringel Morris,
and Danna Gurari. 2021. Going beyond one-size-fits-all image descriptions to
satisfy the information wants of people who are blind or have low vision. In
Proceedings of the 23rd International ACM SIGACCESS Conference on Computers
and Accessibility. 1–15.

[63] Theresa Jean Tanenbaum, Amanda M Williams, Audrey Desjardins, and Karen
Tanenbaum. 2013. Democratizing technology: pleasure, utility and expressiveness
in DIY and maker practice. In Proceedings of the SIGCHI conference on human
factors in computing systems. 2603–2612.

[64] Lida Theodorou, Daniela Massiceti, Luisa Zintgraf, Simone Stumpf, Cecily Morri-
son, Edward Cutrell, Matthew Tobias Harris, and Katja Hofmann. 2021. Disability-
first dataset creation: Lessons from constructing a dataset for teachable object
recognition with blind and low vision data collectors. In Proceedings of the 23rd
International ACM SIGACCESS Conference on Computers and Accessibility. 1–12.

[65] Ultralytics. 2024. YOLO-World: Real-Time Open Vocabulary Object Detection.
https://docs.ultralytics.com/models/yolo-world/

[66] Ultralytics. 2024. YOLOv8. https://docs.ultralytics.com/models/yolov8/
[67] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation

vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[68] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22–25.

[69] Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM
Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1–27.

[70] Jeffrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards
end-user programming for the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 1435–1444.

[71] Momona Yamagami, Alexandra A Portnova-Fahreeva, Junhan Kong, Jacob O
Wobbrock, and Jennifer Mankoff. 2023. How Do People with Limited Movement
Personalize Upper-Body Gestures? Considerations for the Design of Personalized
and Accessible Gesture Interfaces. In Proceedings of the 25th International ACM
SIGACCESS Conference on Computers and Accessibility. 1–15.

[72] Yuhang Zhao, Sarit Szpiro, Jonathan Knighten, and Shiri Azenkot. 2016. CueSee:
exploring visual cues for people with low vision to facilitate a visual search task.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. 73–84.

https://scratch.mit.edu/
https://arxiv.org/abs/2305.09972
https://openai.com/research/gpt-4
https://doi.org/10.1145/267505.267514
https://docs.ultralytics.com/models/yolo-world/
https://docs.ultralytics.com/models/yolov8/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Seeking in Assistive Technology
	2.2 Methods for Personalizing Assistive Technology
	2.3 DIY Assistive Technology
	2.4 End-User Programming

	3 ProgramAlly
	3.1 Design Goals
	3.2 Visual Filtering Programs in ProgramAlly
	3.3 Block-Based Programming Mode
	3.4 Natural Language: Question Mode
	3.5 Programming-By-Example: Explore Mode

	4 User Study Protocol
	4.1 Participants
	4.2 Procedure
	4.3 Data Collection and Analysis

	5 User Study Results
	5.1 Using Filters in ProgramAlly
	5.2 Programming Process and Challenges
	5.3 Creating Programs with Blocks
	5.4 Generating Programs from Questions
	5.5 Generating Programs from Examples
	5.6 Comparing Creation Modes
	5.7 Benefits and Drawbacks of DIY-ing Assistive Technology

	6 Discussion and Future Work
	6.1 Raising the Ceiling of Creation Possibilities
	6.2 Automating Running Programs
	6.3 Programming in the Age of VLMs

	7 Conclusion
	Acknowledgments
	References

