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Figure 1: ProgramAlly is an end-user programming tool for creating visual information filtering programs. ProgramAlly 
provides a multi-modal interface, with block-based, natural language, and programming by example approaches. 

ABSTRACT 
Existing visual assistive technologies are built for simple and com-
mon use cases, and have few avenues for blind people to customize 
their functionalities. Drawing from prior work on DIY assistive 
technology, this paper investigates end-user programming as a 
means for users to create and customize visual access programs to 
meet their unique needs. We introduce ProgramAlly, a system for 
creating custom filters for visual information, e.g., ‘find NUMBER 
on BUS’, leveraging three end-user programming approaches: block 
programming, natural language, and programming by example. To 
implement ProgramAlly, we designed a representation of visual 
filtering tasks based on scenarios encountered by blind people, and 
integrated a set of on-device and cloud models for generating and 
running these programs. In user studies with 12 blind adults, we 
found that participants preferred different programming modal-
ities depending on the task, and envisioned using visual access 
programs to address unique accessibility challenges that are oth-
erwise difficult with existing applications. Through ProgramAlly, 

we present an exploration of how blind end-users can create visual 
access programs to customize and control their experiences. 
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1 INTRODUCTION 
Artificial intelligence (AI)-based assistive technologies can help 
blind people gain visual access in a variety of common scenarios, 
such as reading printed text and identifying objects. These appli-
cations tend to be designed for simple and common use cases to 
maximize their broad usability, and prior work has demonstrated 
that there is still a long-tail of diverse scenarios that automated assis-
tive technologies cannot account for [26]. This leads to users having 
to shoulder additional cognitive load and adjust how they use the 
technology to get usable results. Depending on the application, 

https://doi.org/10.1145/3654777.3676391
https://doi.org/10.1145/3654777.3676391
mailto:permissions@acm.org


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo 

users may need to sift through irrelevant or repetitive information, 
ask follow up questions, or re-take photos to find specific pieces 
of information they are looking for. While these methods can be 
acceptable in some situations, they can be especially difficult in sit-
uations where people want a specific piece of information quickly. 
For example, situations that are repetitive (like sorting mail), time-
sensitive (like catching a bus), or require scanning an entire object 
or room with the camera (like finding an expiration date) can all 
become burdensome with general purpose assistive technology. 

Do-It-Yourself (DIY) assistive technology research has sought to 
address the related issue of a lack of customizability in assistive de-
vices [29]. To this end, a variety of approaches have been developed 
aiming to make it easier for non-experts to create adaptive 3D mod-
els for themselves or a family member [12, 28]. The same concept 
has yet to be fully applied to the space of assistive software. From 
prior work, we know that blind people already put a significant 
degree of effort into customizing, hacking, or simply envisioning 
new assistive technologies [26]. Yet, there is a gap between the 
technologies and customizations that people desire to create, and 
the systems that can support them in doing so with various degrees 
of technical expertise. 

End-user programming is a potential method for supporting 
users in customizing and DIY-ing AI assistive software. Ko et al. 
define end-user programming as a form of programming done by 
non-professionals, ‘to support some goal in their own domains of 
expertise’, further, ‘to achieve the result of a program primarily for 
personal, rather [than] public use’ [34]. This definition is aligned 
with assistive technology needs: blind people are domain experts in 
designing and using assistive technology [4], and there is a long-tail 
of unique scenarios that require personalization to meet individ-
ual needs. End-user programming approaches, while powerful for 
enabling users to do more complex tasks, have not yet been ap-
plied to the domain of visual accessibility. Doing so presents new 
research challenges, namely in making tools that are approachable, 
accessible, and expressive. In this work, we demonstrate the poten-
tial of end-user programming approaches for assistive technology 
creation and customization. 

We introduce ProgramAlly, an end-user programming tool for 
creating and customizing reusable visual information filters (see 
Figure 1). ProgramAlly is a mobile application that provides a multi-
modal interface for creating and iteratively editing short block-
based programs (e.g., ‘find NUMBER on BUS’). It is built on a 
generalizable program representation of similar filtering tasks, de-
rived from a dataset of real-world scenarios from blind people’s 
everyday experiences. ProgramAlly provides a set of methods for 
implementing programs, using multiple interaction modes: direct 
input, speech, and camera input. These modes implement common 
end-user programming approaches: block-based programming, nat-
ural language programming, and programming by example. Progra-
mAlly integrates a set of on-device and cloud models for generating 
and running programs, and can easily be extended to support new, 
specialized models. 

In a study of ProgramAlly with 12 blind participants, we assessed 
its three program creation modes, comparing ProgramAlly to exist-
ing AI-powered assistive applications, and gathering participants’ 
thoughts on programming and DIY-ing assistive technology more 
broadly. Four of these participants were consulted as ProgramAlly 

was being developed, providing design feedback and suggestions for 
new features, as well as evaluating the programming interfaces and 
concept. The remaining participants performed a final evaluation 
of ProgramAlly in both in-person and remote settings. 

We found that participants were receptive to the idea of cus-
tomizing and programming their assistive technology, even if they 
had no programming experience. Participants envisioned using 
different programming interfaces depending on the program they 
wanted to write, the setting, and their experiences with technol-
ogy. We observed that each interface requires different cognitive 
and technical skills, and outline specific challenges faced by blind 
end-user programmers when creating visual programs. 

Overall, ProgramAlly is an investigation of how end-user pro-
gramming techniques can be used to create and customize AI-based 
assistive technology. ProgramAlly aims to inform how AI models 
may be directly used as building blocks by blind people in order 
to support new, complex tasks. This work aims to promote the de-
mocratization of AI technology creation and support blind people 
in having greater control over the AI-based technologies in their 
lives. This paper makes the following contributions: 

(1) A generalized representation of visual information filtering 
tasks, informed by real-world scenarios from blind people’s 
everyday experiences, that can be easily extended to support 
new object classes. 

(2) ProgramAlly, a system instantiating this representation and 
providing a set of multi-modal interaction methods for cre-
ating visual information filtering programs: block-based pro-
gramming, natural language programming, and program-
ming by example. 

(3) A study of ProgramAlly with blind users, assessing the ap-
plication of end-user programming approaches to the DIY 
assistive technology space and highlighting new challenges 
faced by blind end-user programmers. 

2 RELATED WORK 
ProgramAlly builds upon a body of prior research on accessibil-
ity and programming tools. We first review the need to express 
specific intents in assistive technology. Then, we review various ap-
proaches to technology personalization: personalization in assistive 
technologies, DIY assistive technology, and end-user programming. 

2.1 Information Seeking in Assistive 
Technology 

Searching visual scenes for specific pieces of information has al-
ways been an important aspect of assistive technology design. In 
early remote human assistance approaches like VizWiz, users would 
submit a question along with an image, and assistants would use 
their human intelligence to determine a relevant answer [5]. This 
need for specific information is present across a variety of accessi-
bility contexts: Find My Things and Kacorri use teachable object 
recognizers to help blind users locate specific possessions [32, 50], 
VizLens helps blind users search for specific buttons on physical 
interfaces [23], and CueSee highlights products of interest for peo-
ple with low vision [72]. Even outside of accessibility contexts, the 
Ctrl-F shortcut for ‘find’ is ubiquitous. General-purpose and specific 
assistive technologies each have their uses; compare the ambient 
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audio cues in Microsoft’s Soundscape [47] to navigation directions 
from Google Maps, neither is a direct replacement for the other. 

Yet, current automated assistive applications present challenges 
to getting specific information quickly. Whether they run on a live 
camera feed (e.g, Seeing AI [46]) or on a static image (e.g, the GPT-
4 powered ‘Be My AI’ [18]), commercial applications have taken 
a general approach to describing visual information, conveying 
all results from the underlying OCR or object detection models, 
or generating as rich of a description about the visual content as 
possible. While this is sometimes desirable, it risks slowing down 
and increasing the cognitive burden on users who are looking for 
something specific [20]. In this work, we aim to target this need 
for specificity. ProgramAlly is a live assistive technology that can 
provide continuous feedback, but it also aims to capture a user’s 
explicit intent through the creation of filtering programs. 

2.2 Methods for Personalizing Assistive 
Technology 

In accessibility research, personalization of technology to meet user 
needs is used to reduce the burden of accessibility on users [21, 61, 
62]. This typically leaves the function of the technology unchanged, 
but aims to automatically map the input and output mechanisms 
to new systems or modalities [19, 69]. For example, Yamagami 
et al. recently considered how people with motor impairments 
would create personalized gesture sets that map to common input 
mechanisms [71]. 

Work customizing the functionality of assistive technology is 
more limited in comparison. In AI assistive technology, teachable 
object recognizers have been used to allow users to personalize 
recognition models themselves [33]. Users capture their own im-
age or video data of unique objects that can be stored and later 
recognized [50, 64]. These approaches can be more useful than 
off the shelf object recognition models as they are customized to 
user’s specific needs [9, 32]. However, for commercial applications, 
users have limited avenues for customization. While screen readers 
can be personalized through a variety of settings, shortcuts, and 
add-ons [49], AI powered assistive applications are typically part 
of closed software ecosystems. While they may have some settings 
within the application for things like language and output speed, 
this is typically the extent of the customization. Through this work, 
we hope to demonstrate new methods for personalizing assistive 
technology functionality to meet unique user needs. 

2.3 DIY Assistive Technology 
DIY communities have adopted an approach to making centered 
around personalization, democratization, and collaboration [37, 
63]. For assistive technology, DIY approaches can help to address 
assistive technology adoption due to unique or changing needs [29]. 
To this end, prior research on DIY assistive technology has sought 
to make the process of prototyping and making more accessible to 
participants with a range of technical skills [44, 56]. 

Most of this research focuses on making physical tools for acces-
sibility (e.g., making 3D-printed devices like an ironing guide, right 
angle spoon, or tactile graphics [10], prototyping custom prosthet-
ics [27]), rather than software tools. Some tools are being developed 

to support blind people in DIY-ing more high-tech hardware sens-
ing systems, such as A11yBits [25] or the Blind Arduino Project 
[30]. While these raise the ceiling of high-tech DIY creation, little 
research has focused on DIY-ing new software systems for existing 
devices users already own. In their original case studies of DIY 
assistive technology, Hurst and Tobias highlighted one instance of 
‘high-tech custom-built assistive technology’, wherein a team of 
professional programmers worked with an artist with ALS to create 
software that used eye-tracking input for drawing [29]. Lowering 
the barrier to entry for creating technically complex assistive soft-
ware is an important next step in enabling people to DIY personally 
meaningful assistive technology. 

2.4 End-User Programming 
Decades of end-user programming research has sought to under-
stand and support programming work done by people who are not 
trained as programmers [51]. While initially focusing on end-user 
programming in professional contexts (e.g., using spreadsheets or 
other domain-specific tools [59]), a variety of approaches have been 
developed to support programming for personal utility as well. For 
example, Marmite is an end-user programming tool that allows 
users to create new applications by combining data and services 
from multiple existing websites [70]. Here, we describe previous 
end-user programming approaches that work towards the goal of 
making programming more approachable for novices. In this work, 
we aim to apply these existing end-user programming approaches 
to the domain of visual assistive technology, enabling blind people 
to have a new level of control over assistive software. 

Block-Based Programming. Visual, block-based programming ap-
proaches allow users to create programs by graphically organizing 
elements. These approaches often aim to support novices by provid-
ing pre-structured statements to reduce or eliminate syntax errors 
[48], for example, as in Scratch [52]. While these approaches are 
commonly used in educational settings [68], they are also used 
in commercial mobile automation tools to provide sets of compo-
nents that users can arrange as they wish to create time-saving 
automations, as in Shortcuts on iOS [1] and Google Assistant [42]. 

Natural Language Programming. Further work has aimed to syn-
thesize programs from natural language alone. These approaches 
commonly require a set of training data consisting of queries and 
desired automations [17, 39]. Large language models have also been 
used for program synthesis, with mixed results [2, 67]. 

Programming By Example. Programming by example approaches 
alternatively allow users to create programs by providing demon-
strations of desired functionality, without the need for any code 
[16, 40]. Programming by example has been implemented in a range 
of domains, for instance, Rousillon automates web scraping with a 
demonstration from users on how to collect the first row of a data 
table [11], and Sugilite automates actions on mobile interface using 
a demonstration and natural language request [38]. 

End-User Programming and Accessibility. The accessibility of pro-
gramming tools is a nascent area [53–55] that has largely focused 
on developers rather than end users. End-user programming ap-
proaches have occasionally been applied to accessibility contexts 
for the purposes of sharing accessibility bugs and teaching blind 
children. For example, for web accessibility, demonstration has been 
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used as a method for end-users to convey accessibility issues to 
developers [3, 6]. Story blocks is a tangible block-based tool for 
teaching blind students programming concepts [36]. We aim to con-
tinue and extend this line of research by supporting blind end-user 
programmers in creating new visual assistive software. 

3 PROGRAMALLY 
ProgramAlly is a mobile application that implements end-user pro-
gramming techniques to allow users to create block-based visual 
information filtering programs (e.g., ‘find NUMBER on BUS’). Pro-
gramAlly is implemented as a native iOS application, and consists 
of the following components, as shown in Figure 2: 

(1) A program representation, as the framework for imple-
menting and running programs with on-device models. 

(2) Program creation interfaces provide a multi-modal set of 
tools for users to create and iterate on programs. 

(3) A program generation server provides the components 
for automatically generating programs based on images or 
natural language text. 

3.1 Design Goals 
Overall, we designed ProgramAlly based on three primary goals: 
Expressiveness, Approachability, and Accessibility. 

D1: Expressiveness. ProgramAlly’s goal is to be an interface 
where users can customize off-the-shelf models for their own uses. 
Programs should be able to support a wide variety of real-world 
use cases through a flexible structure and range of models. 

D2: Approachability. ProgramAlly needs to be approachable 
for non-experts. To this end, it includes a set of methods to create 
and iterate on programs through multiple modalities, and users can 
choose what fits their needs. ProgramAlly should aim to have as 
little technical jargon as possible and explain program parameters 
in natural terms. 

D3: Accessibility. ProgramAlly needs to be VoiceOver and 
Braille display accessible for users, both while creating and run-
ning programs. ProgramAlly’s VoiceOver implementation groups 
related parameters together to provide context for each statement. 
Additionally, ProgramAlly provides visual context while running 
programs to help the user aim and know what is in frame. 

3.2 Visual Filtering Programs in ProgramAlly 
ProgramAlly is built on a generalizable representation of visual 
filtering tasks. Here, we describe how that represntation was de-
signed, how it is implemented, and how it is used to run visual 
filtering programs. 

3.2.1 Designing a Representation of Filtering Tasks. ProgramAlly’s 
scope of programming visual filtering tasks was determined based 
on prior work indicating it to be a possible domain for assistive 
technology customization [26]. We aimed to understand features of 
filtering tasks in order to build a program representation that could 
capture a variety of user needs (D1: Expressiveness). Herskovitz 
et al. captured a dataset of scenarios where blind participants de-
scribed cases of wanting to create or customize assistive technology 
[26]. From this dataset, we labeled specific instances as filtering 
tasks: cases where the participant was searching for a certain type 

of information. We considered a task to require filtering if using a 
general scene description tool like Be My AI [18] or OCR like Seeing 
AI’s Document Mode [46] would produce extraneous or distracting 
information beyond the intended task, but could produce useful 
results with additional processing. 

Out of the original set of 201 scenarios, we identified 29 as filter-
ing. These were fairly evenly spread across all 12 participants from 
the dataset, with each participant describing at least one. Scenarios 
fell roughly into two types: finding specific types of text, or specific 
items. For searching for text, this could be finding specific strings 
(i.e., a name on a package, a room number in a hotel), finding certain 
types of text (i.e., a number of miles on a treadmill, the number of 
calories on a package), or finding text in a specific location (i.e., on 
a thermostat display, on a license plate). For searching for objects, 
this could be finding a specific type of item (i.e., a trash can in a 
mall, a stairway), or items in a specific location (i.e., a person in a 
chair, an obstacle on a sidewalk). 

From this analysis, we determined two key aspects to include in 
our filtering program representation: (1) the ability to filter by type 
of object or text, and (2) the ability to filter by an item’s location. 
Our representation includes two types of statements to address this: 
a ‘find’ statement, and an ‘on’ statement to convey objects over-
lapping. We confirmed this representation by analyzing a random 
sample of questions from the VizWiz Question Answering dataset, 
a dataset of images and questions asked by blind people [24]. We 
found that the two statements in our representation could repre-
sent a significant portion (approximately half) of the 100 queries 
we analyzed, without the need for additional operators that would 
increase program complexity. 

3.2.2 Program Representation. Programs in ProgramAlly are gen-
erally in the form ‘find ITEM on ITEM’, with any number of 
‘find’ or ‘on’ statements. For example, a program can range from 
‘find CAR’ to ‘find COLOR on CAR’ to ‘find TEXT on LICENSE 
PLATE on CAR’. Adding multiple ‘find’ statements runs each ‘find’ 
statement in parallel and produces a similar effect to an OR operator. 
For example, the program ‘find COLOR on CAR, find TEXT on 
LICENSE PLATE on CAR’ for locating a ride share would announce 
both the color and license plate number of a car if visible. 

Additionally, each item in the statements can consist of both a 
target item (e.g., an object, a type of text), and an optional adjective 
to describe that target. ProgramAlly supports adjectives denoting 
color, size, or location. For example, ‘find NUMBER on RED BUS’, 
‘find LARGEST TEXT on SIGN’, or ‘find ADDRESS on CENTER 
ENVELOPE’ are programs where the output would be further re-
stricted to match specific conditions. Programs in ProgramAlly are 
stored as lists of these items (adjective and target pairs). 

3.2.3 Running Programs. ProgramAlly uses this representation to 
run programs to generate live output. ProgramAlly does this by 
iterating over the list of items in a program backwards, cropping or 
filtering the source image at each step. For example, in the ‘find 
NUMBER on BUS’ program shown in Figure 2, ProgramAlly first 
runs an object detection model that has the class ‘bus’. The model 
will output a series of bounding boxes that have that class label. 
Then, the next item in the program is processed. In this case, for 
each bus bounding box, the frame is cropped and passed into a 
text detection model. The resulting text is then filtered for strings 
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that only consist of numbers. ProgramAlly keeps track of points 
where filtering fails (say, if no buses are found), and later uses that 
information to generate descriptive program output. 

ProgramAlly currently leverages a set of models and functions 
for processing each piece of a program. Each item that can be in-
cluded in a program is stored in a dictionary associating it with 
the relevant model. The two primary types of targets, objects and 
text, are both recognized with a set of on-device models, though 
this could be extended in the future to support cloud models as 
well. For object detection, ProgramAlly uses a set of YOLO models 
as they have low latency on a range of iPhones. This includes the 
default set of 80 object classes detected by YOLOv8 [57, 66]. Ad-
ditionally, we included a set of modified YOLO-World models, a 
version of YOLOv8 that can be extended with new detection classes 
without any fine-tuning through a vision-language modeling ap-
proach [13, 65]. We added four additional models with classes that 
we chose to be relevant to accessibility tasks (D1: Expressiveness) 
[8]: an outdoor navigation model (‘sign’, ‘license plate’), an indoor 
navigation model (‘door’, ‘stairs’, ‘hallway’, ‘exit sign’, ‘trash can’), 
a reading model (‘envelope’, ‘package’, ‘document”, ‘poster’), and a 
product identification model (‘package’, ‘can’, ‘bottle’, ‘box’, ‘prod-
uct’, ‘jar’). For this last set of classes, we made them available under 
one super-class called ‘grocery item’ for flexibility. New models can 
easily be added to ProgramAlly as it searches the dictionary for the 
appropriate model when running a program. 

In addition to recognizing objects, ProgramAlly also detects text 
with iOS’s native text recognition. Programs can include the item 
‘any text’, but can also include various more specific types of text 
such as ‘address’, ‘email’, ‘phone number’, ‘date’, etc. These types 
can all be used within programs, for example, ‘find ADDRESS 
on PACKAGE’. These text types are detected by a combination of 
Google’s Entity Extraction API [22] and regex functions. 

Finally, adjectives in ProgramAlly are then used to further filter 
object or text results. Adjectives include color (red, blue, etc.), size 
(largest, smallest), and location (center, upper left, etc.). These can 
be used alongside any item, for instance in the program ‘find 

LARGEST TEXT on BLUE SIGN’. Adjectives in ProgramAlly were 
implemented natively: color is detected by matching the most com-
mon pixel colors within an object’s bounding box to a set of strings; 
size is determined by comparing an object’s bounding box to others 
of its type and then filtering for the lower or upper quartile; and 
item location is determined based on a quadrant system, breaking 
down the parent object (either the image frame or a bounding box) 
into sections to label the location of a child item (i.e., “text on upper 
left”). While these implementations are naive, they are meant to 
demonstrate that a variety of sources of classification can be used 
in ProgramAlly, and could eventually be replaced by more robust 
models or algorithms. 

3.2.4 Program Output. While running programs, ProgramAlly 
keeps track of where target items were found in order to give 
context for each piece of information. For example, if two buses are 
found in the frame, the output could be: “Found number 73 on bus, 
left of frame, found number 21 on bus, right of frame.” This system 
also tracks where the program failed if the target was not found. If 
the first item in the program is not found, ProgramAlly will attempt 
to provide output for the second item, and so on. For example, if a 
bus is found with no number on it, the output would be, “Found 
bus, no number.” In this case, because ‘number’ results are filtered 
from the more general text detection model, ProgramAlly would 
also read strings that are not numbers as a backup, for example, the 
route name. Unique messages are generated for each failure point, 
for example, if no buses are found (“No bus found”), or if a bus is 
found but the adjective does not match (“Found white bus, no red 
bus visible”). This information is used to provided helpful backup 
information for understanding the scene and aiming the camera. 

2. Programming Interfaces 1b. Running Programs 

ProgramAlly 
block-based 
programming 

programming by 
example 

natural language 
programming 

list all 
possible 
nodes 

generate scene 
graph from 

frames with key 
node 

reconstruct 
program 

few-shot prompting 
GPT-4 

1a. Program Representation 

3. Program Generation Server 

find ADJECTIVE TARGET on ADJECTIVE TARGET 

(color, location, size) (text, objects) 

find NUMBER on BUS 

1. find BUS 2. find NUMBER 

“Found number: 525” 

“Found number: 30” 

Figure 2: ProgramAlly’s main components: (1a) An underlying program representation, the framework for running visual 
filtering programs (1b). (2) A set of three, multi-modal programming interfaces to support programmers with different levels 
of expertise. (3) A program generation server which synthesizes filtering programs from images or natural language. 

3.3 Block-Based Programming Mode 
ProgramAlly’s first method for creating new filtering programs 
is a block-based programming interface, shown in Figure 1. This 
block mode can be used to create a program from scratch, or to edit 
a program that was generated automatically by one of the other 
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two methods. When first creating a new program, the authoring 
interface will display a program with two empty items in order to
provide a default structure for users to fill in. There are two sections 
of this interface. First, a heading called ‘Program Summary’, which 
includes a natural language summary of the implemented program 
for users to refer back to as they edit. For the default program, this 
will initially read, “Find any object on any object”, and will update 
as users fill in the program with their desired items. 

Next, under a heading called ‘Edit Program Directly’, users can 
read through each statement in the program, and edit them with 
actions in VoiceOver. For example, when VoiceOver focus is on the
first ‘find’ statement, it will announce: “Find any object, actions 
available: Edit adjective, Edit object, Delete this item.” If parameters 
for the item have already been selected, the VoiceOver description 
changes to reflect what has been chosen. For example, for the state -
ment ‘find RED BUS’, the description would be: “Find red bus, 
actions available: Edit adjective ‘red’, Edit object ‘bus’, Delete this 
item.” Grouping these together as one single element with multi-
ple actions, rather than having ‘edit adjective’ and ‘edit object’ as 
separate VoiceOver elements, is meant to clarify that the different 
parameters in the ‘find’ statement are functionally related, without 
relying on the visual aspect of them each being on one line (D3: 
Accessibility). This design was also based on the VoiceOver expe-
rience of Apple’s Shortcuts app [1], where each block is read as a 
separate element and editing parameters can be similarly accessed 
through actions. When either of the edit actions are activated, a 
new page will appear listing the possible adjectives or objects to fill 
in the program (shown in Figure 1). The menu includes buttons that 
can be used to filter the items by type, or a search bar for finding a 
specific item. 

3.4 Natural Language: Question Mode 
Inspired by natural language programming approaches, Progra-
mAlly includes ‘Question Mode’, which generates a program from 
a question or statement (D2: Approachability). Users can type or 
dictate a question, and the resulting program will appear in the 
block-based interface for them to review and refine further. For 
instance, the query, ‘What does this bottle say?’ would result in 
the generated program: ‘find ANY TEXT on BOTTLE’. This result 
could then be modified with a follow up question: ‘Actually, just 
read the biggest text’ changes the program to ‘find LARGEST TEXT 
on BOTTLE’. 

To prototype this interaction, we use a few-shot prompting ap-
proach with GPT-4. We provide a custom system prompt describing 
how to extract items, and listing the possible item classes. Then, we 
provide a set of approximately 20 queries and their correct JSON 
program representation that we wrote based on examples from 
accessibility datasets [24, 26]. Without developing a custom en-
tity extraction workflow, we found that this approach works well. 
However, GPT-4 will sometimes produce errors. The most common 
issue is the model hallucinating new object classes. In this case, 
the block interface will alert the user that there is an unsupported 
field and open the editing menu for users to select an alternative. 
The model very rarely produces programs with an incorrect struc-
ture. If the model fails to extract entities, which can happen if the 
question is vague (e.g., “What is this?”) it will occasionally respond 

with natural language rather than a program (e.g., “I’m sorry, I 
don’t know what you mean, can you clarify?”). Future work could 
use additional fine-tuning to create a conversational approach to 
clarifying ambiguous language. 

ProgramAlly also includes a method for users to edit programs 
with a follow-up question, rather than by manually editing a gener-
ated program using the block-mode. When editing a generated or 
pre-existing program, there is a text box where users can type or 
dictate a follow-up question (Figure 1). Various follow up questions 
are included in our system prompt to GPT. Based on feedback in 
our formative studies, we also included an option to access this 
feature while a program is running. If the program output is not as 
expected, users can directly access the option to edit the program 
with natural language, for rapid iteration. For example, when run-
ning the program ‘find NUMBER on BUS’, the user could provide 
the statement, “Read the route name instead”, and the program 
would be modified to be ‘find TEXT on BUS’. 

root

bus sign 

“30” “JACKSON RD.”“525”“30” 

bus 

root 

find NUMBER on BUS 

1. Frame is used to generate tree 

2. Selected item is used to choose 
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Figure 3: In explore mode, ProgramAlly provides a list of all 
items detected in the camera feed. Users then demonstrate 
filtering by choosing a specific item. That item is then used 
to fetch a specific branch from a scene hierarchy, which be-
comes the program. 

3.5 Programming-By-Example: Explore Mode 
ProgramAlly’s Explore Mode allows users to automatically generate 
a program by selecting a target feature detected in the camera feed 
(D2: Approachability). Explore mode lists all object and text features 
in the image, and users select an item to filter for, effectively pro-
viding a demonstration of the filtering behavior. Explore mode was 
included to address the challenge of unknown-unknowns [7]: with-
out knowing what visual features or information is present, blind 
users would not necessarily have all of the information available to 
write a working filtering program. 

In this mode, ProgramAlly runs all object and text detection 
models at once, with the goal of outputting everything that a user 
might want to create a program to find. Users then select the in-
formation they are looking for to demonstrate filtering behavior, 
and a program is generated which aims to filter for that type of 
information in the future. For example, as shown in Figure 3, the 
camera is pointing at a bus stop. If the user selects ‘30’, which is 
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a route number, the resulting generated program will be ‘find
NUMBER on BUS’, because that is where the text ‘30’ was found
in the frame. Once a program is generated, the app again displays
the result in the block-based interface, with the program summary
and the option to edit the generated program further either with a
question or with blocks. 

3.5.1 Generating Programs from Demonstrations. Programs are
generated using ProgramAlly’s server, which represents images as
a tree of items. First, on the device, ProgramAlly maintains a list
of each frame where an item was detected. When the user selects
an item, a frame is then chosen that contains that item, which is
then sent to the generation server. ProgramAlly’s server uses a set
of models to then generate the tree structure. These are slightly
different than the models used on device, and includes Mask R-CNN
under Detectron2 [45] and Google’s Cloud Vision API [ 15] for object 
detection and Google Cloud’s OCR model [14] for text. Additionally, 
to label adjectives and other properties associated with each item, 
the server runs DenseCap [31], a model that creates rich language 
descriptions of image regions. Because DenseCap produces natural 
language descriptions associated with bounding boxes, we use a 
few-shot prompting approach to GPT-4 [58] to extract and label 
the relevant objects and their associated adjectives. 

Next, each item is stored as a node in a scene graph hierarchy 
based on bounding box overlap. The parent node is the entire image, 
and child nodes can either be text or objects, stored with their 
associated adjectives. Finally, from this scene graph, the originally 
selected node is then used to generate a program. The selected 
node is located in the scene graph, and all of its ancestor nodes (not 
including the root image) are then selected, representing a branch of 
the graph (see Figure 3). Traversing up this branch, each node then 
becomes an item in the program. Each node in this set is converted 
into an adjective and object pair, and ordered based on their parent-
child relationship in the source graph. This generated program 
is then sent to the device as JSON. While ProgramAlly currently 
uses a strict tree structure to avoid any ambiguity (ensuring that a 
single branch can always be chosen), this does limit this generation 
technique to supporting only the current ‘find’ and ‘on’ operators. 
To support more complex programs, new synthesis techniques 
would need to be developed. 

Because the server includes the addition of DenseCap for de-
scribing objects, there may in rare cases be a class in the generated 
program that is not present in the app, although we aim to filter 
these classes out when possible. In this case, the block interface 
will again alert the user that the field is unsupported and surface 
the menu for selecting a replacement. 

4 USER STUDY PROTOCOL 
To understand how ProgramAlly can be used as a tool for creating 
and customizing assistive technology, we conducted a study with 
12 blind participants. Our goals were to (1) assess the accessibil-
ity and approachability of ProgramAlly, and (2) understand 
unique challenges faced by blind end-user developers creat-
ing visual technology. This study was approved by our Institu-
tional Review Board (IRB). Participants were compensated $25 per 
hour for their time and expertise. This ranged from 1.5 to 3 hours 
in total, with an average time of 2 hours. 

We aimed to involve participants in ProgramAlly’s design, so the 
first four participants were consulted as it was being developed and 
informed many of its final features. Because these participants also 
completed a similar study protocol as the remaining participants, we 
include their results here as well. Overall, this study was completed 
with three groups of participants: 

(1) Pilot Participants: Four remote participants who tested 
ProgramAlly as it was being developed. The first two partic-
ipants only used the block-based programming mode, and 
the second two participants used all three modes. 

(2) Remote Participants: Four remote participants who com-
pleted a full evaluation of ProgramAlly, running filtering 
programs on sample images. 

(3) Face-To-Face Participants: Four in-person participants 
who completed a full evaluation of ProgramAlly, running 
filtering programs on provided props and comparing filters 
to existing assistive apps. 

4.1 Participants 
Participants were recruited using email lists for local accessibility 
organizations, prior contacts, and snowball sampling. Participants 
were required to be over 18 years old, have some level of visual 
impairment, and regularly use a screen reader to access their devices. 
Participants were also required to have an iPhone so that they could 
download ProgramAlly via TestFlight. 

Demographic information for participants is shown in Table 1. 
Of the 12 participants, two had some prior programming experi-
ence for their coursework or career. However, participants had a 
range of experiences with technology and VoiceOver, and not all 
were experts. For example, R2 and R4 were assistive technology 
professionals, while F2 was new to using VoiceOver and had not 
previously used any mobile assistive applications. We recognize 
that recruiting remote participants can create a bias for people who 
are technically savvy, as they need to have a desktop and be famil-
iar with Zoom. To try diversifying our sample, we also recruited 
in-person participants. 

(a) (b) (c) 

(c) 

Figure 4: Samples of props used in our study: (a) Grocery 
props for in-person testing of ‘find DATE on GROCERY ITEM’, 
(b) Mail props for in-person testing of ‘find ADDRESS on 
PACKAGE’, (c) Images used by remote participants, for testing 
‘find NUMBER on BUS’ and ‘find PERSON on BENCH’. 

4.2 Procedure 
After a brief introductory interview, participants were introduced 
to ProgramAlly by reading through a pre-written program to fa-
miliarize themselves with the concept and interface. Participants 
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were then asked to modify the example program slightly by adding 
an adjective. We tried to keep verbal instructions minimal to let 
participants reason for themselves about the program. The only 
pointer that we gave to participants was that they could swipe 
up or down on the program elements to hear the different editing 
actions available, because depending on the verbosity settings of 
their device, VoiceOver may not have spoken this information. 

After this introduction, participants then used ProgramAlly 
to create and run three programs. Participants used each of the 
three programming interfaces (block mode, explore mode, ques-
tion mode), and were assigned tasks to create a program for (i.e., 
‘create a program that will find addresses on mail’). While creating 
each program, participants were prompted to think aloud to ex-
plain their thoughts or concerns, or to ask questions. Participants 
then ran the programs they created, with remote participants us-
ing sample images and in-person participants using props. These 
props included books, grocery items, and packages and mail, and 
examples are shown in Figure 4. In-person participants were also 
given the option to compare their program to either Be My AI or 
Seeing AI, depending on what they would normally use for the 
same task. After creating each program, participants were asked to 
rate the ease of creating the program, and how accurate they felt 
the program was. 

Finally, participants were asked to rank the three creation modes 
on different factors. The study concluded with an open-ended inter-
view about the prototype app and the experience of using end-user 
programming methods for DIY assistive technology overall. Partic-
ipants were asked to imagine how such an app could fit into their 
existing assistive technology workflows, and the pros and cons of 
creating programs to customize assistive technology. 

ID Gender Age Occupation Vision and Hearing Level 
P1 Man 22 Computer science university student Blind with no light perception, from age 5 

P2 Woman 54 Not employed Blind with some light perception, from age 49 

P3 Man 29 Graduate student Blind with some light perception, from birth 

P4 Woman 32 Program Director Blind with some light pereption, from birth 

R1 Woman 41 Translator Blind, from birth 

R2 Man 37 Accessibility consultant Blind, from birth progressive up to age 15 

R3 Woman 68 Retired Blind with some light perception, progressive since birth 

R4 Man 41 Assistive technology research and training specialist Blind with no light perception from birth. Deaf/ hard of hearing. 
F1 Woman 53 Not employed Blind with no light perception, from age 51 

F2 Woman 60 Retired teacher Blind/ low vision, 20/500, from age 27 

F3 Man 40 N/A Blind with some light perception, from birth. Slightly hard of hearing. 
F4 Woman 72 Retired social worker Blind with some light perception, from age 23 

Table 1: Participant demographics for our study with 12 visually impaired people. Participants self-described their level of 
vision. All participants used a screen reader to access their devices and read text. Participants with a ‘P’ were part of the 
pilot testing, participants with an ‘R’ completed the full study remotely, and participants with an ‘F’ completed the full study 
face-to-face. 

4.3 Data Collection and Analysis 
Remote participants joined a Zoom call that was recorded, and 
when testing the app they were asked to share their phone’s screen 
in the call. Similarly, the face-to-face participants interviews were 
audio recorded, and their devices were screen recorded. The audio 
was later transcribed and used for analysis. We then created written 

descriptions of participant’s strategies for completing each tasks 
from the video data. 

Since participants were encouraged to use a think-aloud method 
and take their time to fully explore the functions, ask usability 
questions, and give feedback, performing an analysis of task com-
pletion time does not provide much insight about how ProgramAlly 
works in practice. Instead, we primarily report qualitative data on 
participants’ strategies and workflows while using ProgramAlly, 
and their general feedback. 

5 USER STUDY RESULTS 
Here we present results from our user study. First, we discuss par-
ticipants’ experiences creating and running programs in general. 
Next, we discuss how participants used and compared each of the 
three program creation modes. Finally, we discuss participants im-
pressions of end-user programming as a customization tool. 

5.1 Using Filters in ProgramAlly 
Participants generally felt positively about using filtering programs 
in ProgramAlly. As P1 described: “There is an abundance of visual 
information. And sometimes a blind person is short on time, and you re-
ally just want the particular piece of information you’re curious about” 
(P1). Not all of the example filtering programs were equally useful 
to participants. For example, R1 appreciated the ‘find PERSON on 
BENCH’ program and envisioned using it in a local park with many 
benches, while R3 had a seeing eye dog already trained to do this 
task. All participants saw practical use in at least one of the filters 
they tried, and all were able to come up with ideas for filters they 
could create in the future. 

5.1.1 Benefits of Filtering. Almost all participants saw filtering as 
an important niche not filled by existing assistive technology. As 
R3 described: “I definitely see a use for this app. Earlier I mentioned 
that I usually think, ‘I already have 3 apps that do the same thing. 
Why do I need another one?’ But this one, because of the ability to 
filter, you know, as much as you want to, you can get very specific, I 
don’t think anything like that exists. Or maybe it exists in a 5 step 
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process” (R3). Similarly, R4 mentioned how filtering could speed 
up some tasks: “I think it’s the next natural direction to go in, in 
some ways, sometimes you get a bit too much information and you 
can speed up the process by not having it automatically generate an 
image description that you might not even have any use for” (R4). 

Participants expressed that filtering seemed particularly useful 
for tasks that were repeated as part of their routines. F2 said, “I 
probably would save some [programs] to the library. Because some 
stuff I would probably use over and over again” (F2). In routine tasks, 
efficiency can be more crucial. F3 said, “Well, it depends on your 
routine, you know. If you have something that you do on an ongoing 
basis, and you really need this life hack, say, to make it real simple for 
you, then absolutely” (F3). Participants were also able to envision 
creating new filters outside of the ones prompted in the study. A 
list of examples is shown in Table 2. 

ID Program Idea 

P1, F2 Identify products by brand or flavor when sorting, find BRAND 
NAME* on GROCERY ITEM 

P3 Find cooking instructions, find TEXT AFTER "COOKING 
INSTRUCTIONS"* on GROCERY ITEM 

P3 Sort credit cards, find NAME* on CREDIT CARD* 

R3, F3 Organize books and CDs, find "AUTHOR NAME"* on BOOK 

R4 Find room number in hotel, find NUMBER on SIGN 

F3 Identify car models, find MAKE/MODEL* of CAR 

F4 Differentiate between two cats, find ORANGE CAT 

Table 2: Participants envisioned creating new filtering pro-
grams outside of those they used in the study, sometimes 
involving new classification models (marked with a *). A sam-
ple of these ideas are shown here. 

5.1.2 Comparing ProgramAlly to Other Assistive Technology. In-
person participants were able to directly compare filtering programs 
they made to other automated assistive apps of their choice. In 
general, participants preferred using the filters they wrote over 
Seeing AI for the same task. For example, F2 reflected on the ‘find 
ADDRESS on PACKAGE’ program: “The filter, I think, did center just 
on the address. It read it one time, and I knew where the start and finish 
was. In Seeing AI, it seemed like it would keep reading and reading 
and reading... I would have to listen to it twice to make sure I got the 
full address, So that’s why I slowed it down, because I really had to pay 
attention where the start of the address was and what it was telling 
me” (F2). Here, when F2 used Seeing AI to read a shipping label, 
it read additional extraneous information aside from the address 
that they then had to manually sort through, to the point where 
they reduced VoiceOver’s speaking rate to listen carefully for the 
information. Similarly, F1 and F3 preferred the ‘find DATE on 
GROCERY ITEM’ program over Seeing AI, as Seeing AI never read 
an expiration date, it just read other information on the product 
package, despite the date being in frame. 

Participants preferred Be My AI for some tasks, but not all of 
them. For example, F4 compared the ‘find DATE on GROCERY 
ITEM’ to Be My AI. After trying multiple times, they were unable 
to take a photo for Be My AI with the expiration date in frame, 
and gave up. On the other hand, participants tried a filter ‘find 
LARGEST TEXT on POSTER’, which was created imagining a sce-
nario where someone would want to skim over fliers on a bulletin 

board. Participants though Be My AI was better suited to this task, 
as it was easy to feel a flyer to center it in the frame, read the first 
line of the output description, and disregard the rest. This confirms 
our hypothesis that ProgramAlly is better suited to tasks that are 
continuous or repetitive, where taking a single photo is difficult. 

5.2 Programming Process and Challenges 
Most participants felt like with practice, they could become more 
familiar with the system and would be able to quickly create new 
programs. However, as blind end-user developers they also faced 
unique programming challenges. 

5.2.1 Programming with Unknown Unknowns. One such challenge 
is not knowing what the ‘ideal’ program would be due to not know-
ing the parameters or targets included in the system. While this 
is a challenge for many end-user programming tools [35] and can 
be alleviated with more familiarity, R3 pointed out that this is also 
tied to prior visual ability: “I’m gonna point out that, depending on 
your onset of blindness, you might not know what questions to ask. 
So it’s going to depend on the user and their life experiences... Because 
their experiences, haven’t you know, given them the ideas of how to 
word a question” (R3). 

To potentially address this, R3 imagined follow up information in 
the example and question modes that would help them understand 
the possible programs better. They said, “If there were things about 
this object that I wanted to know, but I didn’t know that they’re there, 
then there are questions that I’m not coming up with that would 
help me. So you know, in that respect, if the app gave me suggestions 
like, ‘Why don’t you ask it this?’ It might help you get to your final 
question” (R3). Explore mode in particular could be improved by 
listing possible programs, rather than only listing possible features 
of interest. 

5.2.2 Understanding Object Classes. Even when participants were 
aware of a possible object class, they often wondered about the 
extent of what it would detect. For example, P1 questioned the 
program ‘find DATE on BOTTLE’: “I don’t know if it’s super re-
stricted to a specific definition of a bottle, or pretty much any box or 
container. Could it also work with a box of cereal, which also has an 
expiration date on it? A cereal box can hardly be, in colloquial terms 
described as a bottle. But from the AI’s perspective, I wouldn’t be too 
surprised” (P1). The ability to test classes in isolation, outside of a 
filtering program, could be helpful in determining the applicability 
or reliability of a class. 

5.2.3 Balancing Specificity and Reusability. Participants thought 
carefully about how to produce filters that were specific enough to 
be useful, but generalizable enough to be re-usable. For example, 
when writing the ‘find DATE on GROCERY ITEM’ program, R2 
noted that there may be both an expiration date and sell-by date 
on an item. They said, “I guess with any of these filters is like, do 
you go broad, or do you go narrow? And I think ‘any date’ works, 
with the knowledge that there are likely to be multiple dates available. 
That’s not to say that I won’t find the right information, but it just 
might find additional information that I didn’t want” (R2). This is 
also somewhat dependent on prior visual ability, as someone with 
prior sight may be able to recall specific visual features that could 
cause conflicts in their filters. 
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Using only a single object detection class in a program could 
also limit its re-usability. For example, when reading the program 
‘find ADDRESS on PACKAGE’, F4 noted they would want it to run 
on not just packages, but also on envelopes, mailers, or similar 
items. Creating new super-classes by grouping relevant items could 
improve the robustness of possible filters. 

R4 noted that balancing program specificity could become more 
difficult when they were outside of their normal routine: “For ex-
ample, in a situation where maybe I am trying to find a specific bus, I 
want to be able to quickly do that. So I would pre-write the program. 
But like, I could show up in a city next week, and not be there again 
for 3 years, so there would be no point in me generating different 
programs based on that. So it’s faster to just ask the question. But you 
know, in other situations, when I might have a little more time to put 
it together, or things like that, it seems like the other methods are a 
bit more accurate” (R4). Here, they described how if they needed 
a filter outside of one that they would typically use, they could 
quickly create one by asking a question, rather than spending time 
to carefully set up something they may only use a handful of times. 

5.3 Creating Programs with Blocks 
ProgramAlly’s block-based programming interface has the advan-
tage of offering more fine-grained control over a program, but it 
also has the highest learning cost. However, participants expressed 
that this was something they felt confident in being able to learn 
over time as they created new filters. 

5.3.1 Advantages: Control and Accuracy. Participants found that 
this mode produced programs that most accurately matched their 
intents because they could quickly specify exactly what information 
they wanted: “I think this produces the most consistent accuracy, 
knowing if you can go in there and just select things” (F1). They also 
observed that this mode reduced some of the ambiguity present 
when a program was automatically generated for them: “I would say 
it’s the least difficult way, just because you know kind of what you’re 
getting, and you know what’s available” (R2). Here, R2 is describing 
that when they already had a program in mind and knew the format, 
it was easier to program it directly than it was to think about how 
to phrase it in natural language. 

5.3.2 Learning to Think Programatically. The block-programming 
mode required participants to adopt a programming mindset and 
break down an idea into multiple components. For example, par-
ticipants sometimes added items in the wrong order. P3 wrote the 
program ‘find BUS on NUMBER’, and described their thought 
process as “I was thinking, okay, first I need to look for a bus. That’s 
the most important thing. So putting that first... I was going through 
a more like, linear process, you know, look for the bus then look for 
the number. But that’s just like how the brain works. But if I had 
paid more attention to what it was saying...” (P3). R2 also noted 
that it took some extra thought to consider how the scene would 
visually appear: “For me, I was just thinking about it in terms of 
like, if you’re looking for two objects which is going to be visually 
larger and easier to discover” (R2). They then realized that they had 
put the elements in the wrong order when they went back to read 
the program summary: “This particular field helps me to determine 

which order I should put things. So I see that I said, ‘find any bench 
on any object’. So I actually want to find ‘any person’ first” (R2). 

Additionally, when parameterizing their request participants 
were sometimes unsure if an item they wanted to add would be 
considered an adjective or an object. R3 wanted to add the adjective 
‘red’ to an existing statement that said ‘find any book’, but they 
selected ‘edit object’ because they wanted to edit how the book 
was detected: “Cause I was like, ‘adjective’? I mean, I know what an 
adjective is, but I wasn’t like relating it to ‘red book”’ (R3). Similarly, 
F3 described, “It’s like I have to fill in these categories. And I have to 
think about which category is which. I have to think why adjectives, 
and why objects and things, and it’s interesting” (F3). 

5.3.3 Challenge: Interface Complexity. The block-based program-
ming mode has more interface elements, which participants recog-
nized as a learning curve. Additionally, even once familiar with the 
interface, there is still a time cost to creating longer or more complex 
programs where many components need to be edited. R2 described: 
“So the disadvantage, of course, is like having to go through the whole 
process, which can be as long or short as necessary. It’s the one that 
has the most, I would say, interaction cost in terms of just having 
to touch your device and manipulate the interface” (R2). Creating a 
long program like ‘find TEXT on LICENSE PLATE on CAR, find 
COLOR on CAR’ would take more time than creating the program 
‘find PHONE’, simply because there are more parameters. 

5.4 Generating Programs from Questions 
Participants considered question mode to be the fastest way to 
get started making programs. However, the generated programs 
sometimes did not capture the correct parameters. 

5.4.1 Advantages: Fast and Approachable. Many participants pre-
ferred the natural language mode because it was fast, and required 
the least cognitive effort. As R4 described: “It’s faster, overall like, 
you don’t have to break it down and add an adjective, or add this 
or that. You just have to have it categorize things correctly, which 
it seems like it mostly does” (R4). Even if the generated program 
was not exactly as intended, participants felt that they could use 
it as a starting point for editing (either with blocks or follow-up 
questions). For example, F3 said, “I feel like I’m more in control of it. 
I can be just type in what I want, and then customize it from there. It 
just seems more straightforward to me to interact that way” (F3). 

5.4.2 Challenge: Language Can Be Vague. Participants felt that 
sometimes the generated programs did not capture their full intent. 
R3 described how this could be due to ambiguities in natural lan-
guage, comparing how they would phrase a program for finding 
dates versus one for finding bus routes: “I mean a date is a date. 
There’s no leniency. But if you’re asking for a bus route, do you mean 
the number of a route or the label of a route?” (R3). Because of this, 
some participants spent time thinking about exactly how to phrase 
a question to get it to detect what they wanted. R1 noted that they 
would rather edit the program directly than think about how to 
phrase questions: “[In block mode], I can be more specific and I can 
choose exactly what I want... Here, I don’t know, it’s still too difficult 
to phrase. I need too much brain power” (R1). Participants also some-
times forwent natural language, and simply dictated a statement in 
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the program structure ("find blank on blank") to try to overcome 
this. 
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Figure 5: Participants rated each of ProgramAlly’s three creation modes on a set of factors. Charts (A) and (B) demonstrate 
the trade offs between block and question mode: question mode was found to be easiest, but block mode was perceived to be 
slightly more accurate. Chart (C) demonstrates that block mode had the highest learning curve, though participants were able 
to create correct programs with all three modes. Each mode may be suited to different users or scenarios. 

5.5 Generating Programs from Examples 
Participant appreciated the potential of explore mode to give them 
a new awareness of visual features. But, in its current state, it was 
difficult for participants to know what features to select, and the 
generated programs sometimes contained unexpected conditions. 

5.5.1 Advantages: Finding Unknown Features. Participants saw the 
greatest strength of this mode as its potential to make them aware 
of new features and program possibilities. “The summary gave in-
formation that I wasn’t even aware of. So in that respect it was good, 
it was like ‘oh, buses are red, gotcha”’ (R3). “For like the odd situation, 
you could use the explore option. And once you realize all of the details 
that are out there, you could say, well, this is worth categorizing, and 
I wanna be able to, you know, have a filter just based on stuff in the 
environment that I didn’t know about. And I could actually see a 
real need for the the explore mode over the [question mode], because 
sometimes we don’t know what we’re working with in the field” (F3). 

Additionally, P3 pointed out that it was a useful way of testing 
the object detection would work on a specific item before manually 
writing a program for it. “For example, if there is some item, let’s say 
medicine, or a bottle of milk or something that you consume every 
day. You don’t know if the app would recognize that particular milk 
or not. So rather than try to create a program and try my luck, I can 
test it out directly. And if it detects, then you’re cool, like, just create 
a filter for the next time, you know, and keep it saved, and then you 
can run it every time” (P3). 

5.5.2 Challenge: Extrapolating Intent from a Single Feature. In ex-
plore mode, participants needed to pick a feature of interest, and 
ProgramAlly generated a program based on finding that feature 
in the future. Participants noted that it was hard to pick a target 
without knowing what the resulting filter would be, and without 

knowing the context of some visual features. For example, when 
trying to generate a program that would read the route number on 
a bus, some participants debated between choosing the object ‘bus’ 
or the number ‘73’, both of which appeared as possible targets. 

The program generation method we developed attempted to 
create filters to match specific visual content, though participant 
feedback revealed that one generation method is not suited to all 
tasks, and ProgramAlly may be including too many visual features. 
For example, R3 reasoned about why a generated filter included the 
adjective ‘red’: “Maybe the bus in the image was red, but no it doesn’t 
seem relevant to the route number. It probably did the right thing, it 
probably filtered it. Maybe all 73 buses are red. So it might have done 
the job that it was supposed to do, and not the job that I wanted it to 
do” (R3). F4 similarly noted that different features are relevant for 
different tasks. They generated a program by selecting ‘book’ as 
the target, and the result was ‘find blue book on table’: “You know 
you may be looking for. The colors, you’re like, okay... When it comes 
to a book, that’s not what I really need, because, like, when we look 
for our books, we look by title and all, of course” (F4). Considering 
these types of semantics when generating programs could improve 
the results. 

5.6 Comparing Creation Modes 
Participants generally appreciated all three programming modes 
were available in the app. An overview of how participants com-
pared the modes is shown in Figure 5. Each mode required partici-
pants to think about their goal in a new way, and required different 
types of effort to turn it into an operable program. Parameteriz-
ing a request in block mode, selecting a visual feature in explore 
mode, and phrasing requests in question mode each presented their 
own strengths and challenges. Because of this, participants could 
see benefits of using different programming interfaces in different 
scenarios. As R4 put it: “It’s all contextual, I think. So it depends on 
what you want to do. Like, we did 3 different examples. But I would 
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use different methods based on what I knew about the environment. 
It just depends on what you’re doing, you know, if you already have 
an image you’re working with. You might go with that particular 
program, you know, you explore the image, and then that’s what you 
use. It just really depends on the situation” (R4). 

Participants also noted that the different modes could be helpful 
to people with different levels of technical expertise. P3 said, “I think, 
also, like, to the user, they’ll be scared, like, I have to do programming 
to use the app... But I mean, anyone pretty much can do it, and there 
are multiple ways, even if one method is gone. So there were two other 
methods to create” (P3). 

5.6.1 Structured vs. Unstructured Input. Despite question mode 
seeming more approachable, block mode’s structure provided par-
ticipants a framework to work within. As P1 described: “I think one 
positive is that it gives you more of a predetermined list to choose from. 
So kinds of objects that you might be interested in, kinds of things 
on those objects that you might be looking for. One of the challenges 
with personalization is you can give someone too much choice to the 
point that they are overwhelmed and unsure of where to even start” 
(P1). This framework gave people an understanding of the limits of 
what they could create. 

To balance these approaches, multiple participants imagined 
a hybrid block and natural language approach, where the block 
structure would still be present, but they could type in or dictate 
each program item instead of scrolling through menus. For example, 
F3 described, “Maybe if the display were slightly different, like ‘find 
any blank on any blank’, and I could input the text there, that would 
make sense. But I’m trying to choose objects and adjectives and things 
like that. And it just seems a little cluttered” (F3). 

5.6.2 Editing Generated Programs. Participants generally appreci-
ated that the two program generation modes (explore mode and 
question mode) displayed their results in the block interface, even 
participants who did not prefer that interface to start. For instance, 
F2 and F3 both preferred the generation interfaces, but agreed that 
it was easier to edit an existing program than to create one from 
scratch. Participants also expressed that they would use this inter-
face to refine the generated programs, as P4 said, “It’s always good 
to have a backup there” (P4). 

5.7 Benefits and Drawbacks of DIY-ing Assistive 
Technology 

Participants appreciated the deeper level of customization available 
when programming filters as compared to current assistive tech-
nology. As R2 described, it puts power into the hands of the user 
to decide what they needed: “I think it all comes down to providing 
choice. Ultimately, what I like is that you’re putting the information 
available, in the person’s hands to choose... You know, just being able 
to empower people to be independent... What you’ve all created here 
is really neat because it’s creating modularity to access the informa-
tion. And I love that. I love that. And I wish more and more assistive 
technology companies thought about, how can we take these pieces 
of information and put it in the hands of the people that need it in 
a way that they can then modify it and change it and make it their 
own” (R2). 

On the other hand, R1 noted that having to put in the effort to 
create filters themselves could be considered a burden: “People are 
not developers. Another developer, I suppose, knows how to program. . . 
I’m not a builder. There are tasks that are difficult for us to do, but 
what, I have to spend 5 hours to tinker with a program for what?” (R1). 
R1 expressed that they felt like ProgramAlly was a good option for 
developers wanting to quickly create things, but that it may not 
be ideally directed towards end-users. Other participants who did 
not mind the idea of programming still mentioned that re-framing 
the functionality might make ProgramAlly feel more approachable. 
Eventually, ProgramAlly could be considered as a platform for 
people to share programs that they have created, enabling a level 
of collaboration among end-users with different levels of expertise. 

6 DISCUSSION AND FUTURE WORK 
We found that ProgramAlly addresses unmet needs, empowering 
blind people to customize their experiences with AI. Here, we out-
line opportunities for building on ProgramAlly to further improve 
its utility. 

6.1 Raising the Ceiling of Creation Possibilities 
Throughout our user studies and analysis of existing data, we en-
countered many scenarios that could be addressed by ProgramAlly 
with the addition of new program operators. While ProgramAlly 
was implemented with ‘find’ and ‘on’ statements for simplicity and 
approachability, the addition of new operators could make Pro-
gramAlly more expressive for DIY enthusiasts and power users. 
For example, the addition of traditional logical operators such as 
AND, OR, and NOT would allow for a greater degree of specificity in 
programs. However, AND and OR are easily confused among end-
users as their natural language counterparts can be ambiguous, so 
introducing these would need to be done with care. 

New operators could also define additional ways for objects 
to interact with each other. Currently, ‘on’ denotes objects whose 
bounding boxes are primarily overlapping. An operator like ‘nearby’ 
could specify items that do not overlap, but are in proximity. Simi-
larly, ‘following’ could specifically find text content after a phrase, 
as in find TEXT following "EXP:" for more specifically finding 
an expiration date. ProgramAlly as a system could be extended with 
these, but it would require new block interface designs, a challenge 
for approachability and accessibility. 

Additionally, ProgramAlly could benefit from the inclusion of 
additional, specialized models for certain tasks. For instance, a 
model that detects the make and model of a vehicle for locating a 
ride share, or text classification models that can filter out ‘brand 
names’ or ‘flavors’ for shopping scenarios. One notable object class 
missing in ProgramAlly is ‘digital display’, for reading screens on 
thermostats, microwaves, or buses. We attempted to use YOLO-
World to detect this class, but found that it was not accurate enough 
to be usable. Although we currently use customized YOLO-World 
models on-device so the classes are pre-selected, YOLO-World was 
built for the ability to add new classes in real-time. In the future, 
when question mode extracts parameters from a request, the server 
could automatically generate new YOLO-World models to fill in 
gaps in the program as needed. 
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In the future, we imagine ProgramAlly being paired with other 
personalization approaches to create a deeper level of customization. 
For instance, if combined with the capabilities of teachable object 
recognizers, users would not only be able to locate personal items, 
but to integrate them into programs as a basis for further filtering 
or automation. Overall, we also see ProgramAlly as going beyond 
programming for visual information tasks. We believe our study 
reveals important findings about how blind end-users program, 
ideally leading to supporting more complex tools for people to DIY 
a range of assistive technologies outside of filtering programs. 

Furthermore, when the creation ceiling in ProgramAlly is raised 
with things like additional operators and models, or if end-user 
programming approaches are eventually used to create different 
types of assistive technologies, this comes with a trade-off. Bal-
ancing this complexity with ease of use is a critical concern for 
future accessibility work in this direction. For instance, although 
ProgramAlly could eventually include a large library of models and 
classes to detect, these could be activated selectively or as-needed 
for different users or situations, making the system less overwhelm-
ing. Eventually, ProgramAlly could also make suggestions for how 
to create or improve programs based on how a person uses the 
system over time. 

6.2 Automating Running Programs 
Because of the long-tail problem, some of our participants saw 
managing a library of programs as unwieldy. For example, R1 said, 
“Would I have to program actions for all the objects in the world?” (R1). 
P1 expressed a similar sentiment: “When it comes to just the variety 
of information that anyone might be looking for, at any given point of 
time... I don’t know. It just feels like there are so many permutations 
and combinations here. So many ways in which humans may want 
to query information that trying to build an even remotely compre-
hensive list of the more common categories of information seems like 
an endeavor that’s really hard” (P1). 

Being able to automate when programs are run could remove 
some of this burden. For example, a ‘find ADDRESS on PACKAGE’ 
program could be automatically started whenever a package enters 
the frame, on the assumption that the user is sorting mail. Or, like 
other mobile automations, programs could be tied to a location. For 
example, when a user arrives at a bus stop, the ‘find NUMBER on 
BUS’ program could start. 

6.3 Programming in the Age of VLMs 
Although large vision language models (VLMs) are becoming more 
powerful, they may not be a panacea, and making them truly ben-
eficial requires deep integration with the needs of blind people. 
Despite the advantages of providing fully automated, subjective 
descriptions, they also add new challenges for blind users to acquire 
information. While this is still an area of active research, Massiceti 
et al. found the CLIP-based models were up to 15% less accurate on 
images taken by blind people [43]. Additionally, as hallucinations 
seem to happen more often when describing complex scenes [41] or 
when being asked a follow-up question (the model appears to sec-
ond guess itself), they could potentially arise more in accessibility 
contexts. 

Generally, this also calls back to the long lived direct manipula-
tion vs interface agents debate [60]; although there is an effort cost 

to creating personalizations, there is also a cost when an intelligent 
system assumes someone’s needs and gets them wrong. Although 
they may appear at odds, we envision end-user programming as 
a supplement, not a replacement for large VLMs. We envision the 
two approaches complementing each other in the following ways: 

Reducing hallucinations by breaking down problems. Pro-
grams can serve as a way to break down visual problems into smaller 
pieces, avoiding complex questions that might cause models to fail. 
Just as ProgramAlly crops each image frame to relevant object 
bounding boxes when running programs, a cropped version of an 
image could be passed to the VLM to query in a more constrained 
way. For example, programs could contain subjective adjectives like 
‘clean’ or ‘matching’. A VLM could be queried for these items in 
a constrained way, the answer could be parsed and fed back into 
the program. VLMs still are not good at reading large chunks of 
printed text or reasoning about complex scenes, but if the input 
and output were constrained then they may produce better results. 

Balancing ambiguity in language and improving explain-
ability. As discussed in our study findings, language is ambiguous, 
and programs can help articulate specific intents. Additionally, pro-
grams can serve as explicit step-by-step instructions of what a 
system is doing to come up with a given answer. This could help 
users better understand the limits of different tools, to better un-
derstand and predict why they fail. 

Making large VLMs ‘live’ and creating reusable queries. 
Current large VLMs take in a static image as input. Yet, as models 
become faster, running a query on a live camera feed will not be as 
simple as repeating the question on each frame. Because programs 
specify what users want to hear and when, they could be used to 
convert natural language responses into real-time feedback. 

7 CONCLUSION 
We have presented ProgramAlly, an end-user programming tool for 
creating custom visual filtering programs. ProgramAlly implements 
a set of programming interfaces: block-based, natural language, and 
programming by example. Through a user study of ProgramAlly 
conducted with 12 blind participants, we demonstrate the promise 
of end-user programming approaches for creating and customizing 
AI-based assistive technologies. We observed that users prefer dif-
ferent approaches depending on their experiences and the task, and 
also note areas where blind end-user programmers may face unique 
challenges while creating highly visual, camera-based technologies. 
Overall, ProgramAlly is a step towards supporting blind people in 
creating personally meaningful assistive technologies. 

ACKNOWLEDGMENTS 
We sincerely thank our participants for their time, and for sharing 
their expertise and experiences. We also thank our reviewers for 
their time and feedback. This research was supported in part by a 
Google Research Scholar Award. This material is based upon work 
supported by the National Science Foundation Graduate Research 
Fellowship under Grant No. DGE-1841052. Any opinion, findings, 
and conclusions or recommendations expressed in this material are 
those of the authors(s) and do not necessarily reflect the views of 
the National Science Foundation. 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo 

REFERENCES 
[1] Apple. 2022. Shortcuts User Guide. https://support.apple.com/guide/shortcuts/ 

welcome/ios 
[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk 

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, 
et al. 2021. Program synthesis with large language models. arXiv preprint 
arXiv:2108.07732 (2021). 

[3] Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility 
by demonstration: enabling end users to guide developers to web accessibility 
solutions. In Proceedings of the 12th international ACM SIGACCESS conference on 
Computers and accessibility. 35–42. 

[4] Jeffrey P Bigham and Patrick Carrington. 2018. Learning from the front: People 
with disabilities as early adopters of AI. Proceedings of the 2018 HCIC Human-
Computer Interaction Consortium (2018). 

[5] Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, 
Robert C Miller, Robin Miller, Aubrey Tatarowicz, Brandyn White, Samual White, 
et al. 2010. Vizwiz: nearly real-time answers to visual questions. In Proceedings 
of the 23nd annual ACM symposium on User interface software and technology. 
333–342. 

[6] Jeffrey P Bigham and Richard E Ladner. 2007. Accessmonkey: a collaborative 
scripting framework for web users and developers. In Proceedings of the 2007 
international cross-disciplinary conference on Web accessibility (W4A). 25–34. 

[7] Jeffrey P Bigham, Irene Lin, and Saiph Savage. 2017. The Effects of" Not Knowing 
What You Don’t Know" on Web Accessibility for Blind Web Users. In Proceedings 
of the 19th international ACM SIGACCESS conference on computers and accessibility. 
101–109. 

[8] Erin Brady, Meredith Ringel Morris, Yu Zhong, Samuel White, and Jeffrey P 
Bigham. 2013. Visual challenges in the everyday lives of blind people. In Proceed-
ings of the SIGCHI conference on human factors in computing systems. 2117–2126. 

[9] Danielle Bragg, Nicholas Huynh, and Richard E Ladner. 2016. A personalizable 
mobile sound detector app design for deaf and hard-of-hearing users. In Pro-
ceedings of the 18th International ACM SIGACCESS Conference on Computers and 
Accessibility. 3–13. 

[10] Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J Chang, Megan Kelly Hof-
mann, Amy Hurst, and Shaun K Kane. 2015. Sharing is caring: Assistive technol-
ogy designs on thingiverse. In Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems. 525–534. 

[11] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing distributed hierarchical web data. In Proceedings of the 31st Annual ACM 
Symposium on User Interface Software and Technology. 963–975. 

[12] Xiang’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian 
Coros, and Scott E Hudson. 2016. Reprise: A design tool for specifying, generating, 
and customizing 3D printable adaptations on everyday objects. In Proceedings of 
the 29th Annual Symposium on User Interface Software and Technology. 29–39. 

[13] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying 
Shan. 2024. YOLO-World: Real-Time Open-Vocabulary Object Detection. arXiv 
preprint arXiv:2401.17270 (2024). 

[14] Google Cloud. 2022. Optical Character Recognition (OCR) Vision API. https: 
//cloud.google.com/vision/docs/ocr 

[15] Google Cloud. 2024. Detect Multiple Objects. https://cloud.google.com/vision/ 
docs/object-localizer 

[16] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming 
by demonstration. MIT press. 

[17] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark 
Marron, and Subhajit Roy. 2016. Program synthesis using natural language. In 
Proceedings of the 38th International Conference on Software Engineering. 345–356. 

[18] Be My Eyes. 2024. Introducing: Be My AI. https://www.bemyeyes.com/blog/ 
introducing-be-my-ai 

[19] Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S Weld. 2007. Automatically 
generating user interfaces adapted to users’ motor and vision capabilities. In 
Proceedings of the 20th annual ACM symposium on User interface software and 
technology. 231–240. 

[20] Bhanuka Gamage, Thanh-Toan Do, Nicholas Seow Chiang Price, Arthur Lowery, 
and Kim Marriott. 2023. What do Blind and Low-Vision People Really Want from 
Assistive Smart Devices? Comparison of the Literature with a Focus Study. In 
Proceedings of the 25th International ACM SIGACCESS Conference on Computers 
and Accessibility. 1–21. 

[21] Alejandra Garrido, Sergio Firmenich, Gustavo Rossi, Julian Grigera, Nuria Medina-
Medina, and Ivana Harari. 2012. Personalized web accessibility using client-side 
refactoring. IEEE Internet Computing 17, 4 (2012), 58–66. 

[22] Google. 2024. ML Kit Entity Extraction API. https://developers.google.com/ml-
kit/language/entity-extraction 

[23] Anhong Guo, Xiang ’Anthony’ Chen, Haoran Qi, Samuel White, Suman Ghosh, 
Chieko Asakawa, and Jeffrey P. Bigham. 2016. VizLens: A Robust and Interactive 
Screen Reader for Interfaces in the Real World. In Proceedings of the 29th Annual 
Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). 
Association for Computing Machinery, New York, NY, USA, 651–664. https: 

//doi.org/10.1145/2984511.2984518 
[24] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, 

Jiebo Luo, and Jeffrey P Bigham. 2018. Vizwiz grand challenge: Answering visual 
questions from blind people. In Proceedings of the IEEE conference on computer 
vision and pattern recognition. 3608–3617. 

[25] Liwen He, Yifan Li, Mingming Fan, Liang He, and Yuhang Zhao. 2023. A Multi-
modal Toolkit to Support DIY Assistive Technology Creation for Blind and Low 
Vision People. In Adjunct Proceedings of the 36th Annual ACM Symposium on User 
Interface Software and Technology. 1–3. 

[26] Jaylin Herskovitz, Andi Xu, Rahaf Alharbi, and Anhong Guo. 2023. Hacking, 
switching, combining: understanding and supporting DIY assistive technology 
design by blind people. In Proceedings of the 2023 CHI Conference on Human 
Factors in Computing Systems. 1–17. 

[27] Megan Hofmann, Jeffrey Harris, Scott E Hudson, and Jennifer Mankoff. 2016. 
Helping hands: Requirements for a prototyping methodology for upper-limb 
prosthetics users. In Proceedings of the 2016 CHI conference on human factors in 
computing systems. 1769–1780. 

[28] Amy Hurst and Shaun Kane. 2013. Making" making" accessible. In Proceedings of 
the 12th international conference on interaction design and children. 635–638. 

[29] Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with do-it-yourself 
assistive technology. In The proceedings of the 13th international ACM SIGACCESS 
conference on Computers and accessibility. 11–18. 

[30] The Smith-Kettlewell Eye Research Institute. 2024. The Blind Arduino Project. 
https://www.ski.org/projects/blind-arduino-project 

[31] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016. DenseCap: Fully Convolu-
tional Localization Networks for Dense Captioning. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 

[32] Hernisa Kacorri. 2017. Teachable machines for accessibility. ACM SIGACCESS 
Accessibility and Computing 119 (2017), 10–18. 

[33] Hernisa Kacorri, Kris M Kitani, Jeffrey P Bigham, and Chieko Asakawa. 2017. 
People with visual impairment training personal object recognizers: Feasibility 
and challenges. In Proceedings of the 2017 CHI Conference on Human Factors in 
Computing Systems. 5839–5849. 

[34] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, 
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers, 
et al. 2011. The state of the art in end-user software engineering. ACM Computing 
Surveys (CSUR) 43, 3 (2011), 1–44. 

[35] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human 
Centric Computing. IEEE, 199–206. 

[36] Varsha Koushik, Darren Guinness, and Shaun K Kane. 2019. Storyblocks: A 
tangible programming game to create accessible audio stories. In Proceedings of 
the 2019 CHI Conference on Human Factors in Computing Systems. 1–12. 

[37] Stacey Kuznetsov and Eric Paulos. 2010. Rise of the expert amateur: DIY projects, 
communities, and cultures. In Proceedings of the 6th Nordic conference on human-
computer interaction: extending boundaries. 295–304. 

[38] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating 
multimodal smartphone automation by demonstration. In Proceedings of the 2017 
CHI conference on human factors in computing systems. 6038–6049. 

[39] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping 
natural language instructions to mobile UI action sequences. arXiv preprint 
arXiv:2005.03776 (2020). 

[40] Henry Lieberman. 2001. Your wish is my command: Programming by example. 
Morgan Kaufmann. 

[41] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, 
Liping Hou, Rongjun Li, and Wei Peng. 2024. A survey on hallucination in large 
vision-language models. arXiv preprint arXiv:2402.00253 (2024). 

[42] Google LLC. 2022. Google Assistant. https://play.google.com/store/apps/details? 
id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1 

[43] Daniela Massiceti, Camilla Longden, Agnieszka Slowik, Samuel Wills, Martin 
Grayson, and Cecily Morrison. 2023. Explaining CLIP’s performance disparities 
on data from blind/low vision users. arXiv preprint arXiv:2311.17315 (2023). 

[44] Janis Lena Meissner, John Vines, Janice McLaughlin, Thomas Nappey, Jekaterina 
Maksimova, and Peter Wright. 2017. Do-it-yourself empowerment as experi-
enced by novice makers with disabilities. In Proceedings of the 2017 conference on 
designing interactive systems. 1053–1065. 

[45] Meta. 2024. Detectron2. https://cloud.google.com/vision/docs/ocr 
[46] Microsoft. 2021. Seeing AI. https://www.microsoft.com/en-us/ai/seeing-ai 
[47] Microsoft Research. 2021. Microsoft Soundscape – A map delivered in 3D sound. 

https://www.microsoft.com/en-us/research/product/soundscape/. 
[48] Siti Nor Hafizah Mohamad, Ahmed Patel, Rodziah Latih, Qais Qassim, Liu Na, 

and Yiqi Tew. 2011. Block-based programming approach: challenges and benefits. 
In Proceedings of the 2011 international conference on electrical engineering and 
informatics. IEEE, 1–5. 

[49] Farhani Momotaz, Md Touhidul Islam, Md Ehtesham-Ul-Haque, and Syed Masum 
Billah. 2021. Understanding screen readers’ plugins. In Proceedings of the 23rd 
International ACM SIGACCESS Conference on Computers and Accessibility. 1–10. 

https://support.apple.com/guide/shortcuts/welcome/ios
https://support.apple.com/guide/shortcuts/welcome/ios
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/object-localizer
https://cloud.google.com/vision/docs/object-localizer
https://www.bemyeyes.com/blog/introducing-be-my-ai
https://www.bemyeyes.com/blog/introducing-be-my-ai
https://developers.google.com/ml-kit/language/entity-extraction
https://developers.google.com/ml-kit/language/entity-extraction
https://doi.org/10.1145/2984511.2984518
https://doi.org/10.1145/2984511.2984518
https://www.ski.org/projects/blind-arduino-project
https://play.google.com/store/apps/details?id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.google.android.apps.googleassistant&hl=en_US&gl=US&pli=1
https://cloud.google.com/vision/docs/ocr
https://www.microsoft.com/en-us/ai/seeing-ai
https://www.microsoft.com/en-us/research/product/soundscape/


ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

[50] Cecily Morrison, Martin Grayson, Rita Faia Marques, Daniela Massiceti, Camilla 
Longden, Linda Wen, and Edward Cutrell. 2023. Understanding Personalized 
Accessibility through Teachable AI: Designing and Evaluating Find My Things 
for People who are Blind or Low Vision. In Proceedings of the 25th International 
ACM SIGACCESS Conference on Computers and Accessibility. 1–12. 

[51] Brad A Myers, Amy J Ko, and Margaret M Burnett. 2006. Invited research 
overview: end-user programming. In CHI’06 extended abstracts on Human factors 
in computing systems. 75–80. 

[52] Massachusetts Institute of Technology. 2024. Scratch. https://scratch.mit.edu/ 
[53] Maulishree Pandey, Sharvari Bondre, Sile O’Modhrain, and Steve Oney. 2022. 

Accessibility of UI Frameworks and Libraries for Programmers with Visual Im-
pairments. (2022), 10. 

[54] Venkatesh Potluri, John Thompson, James Devine, Bongshin Lee, Nora Morsi, 
Peli De Halleux, Steve Hodges, and Jennifer Mankoff. 2022. Psst: Enabling blind 
or visually impaired developers to author sonifications of streaming sensor data. 
In Proceedings of the 35th Annual ACM Symposium on User Interface Software and 
Technology. 1–13. 

[55] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swami-
nathan, and Gopal Srinivasa. 2018. Codetalk: Improving programming environ-
ment accessibility for visually impaired developers. In Proceedings of the 2018 chi 
conference on human factors in computing systems. 1–11. 

[56] Ravihansa Rajapakse, Margot Brereton, Paul Roe, and Laurianne Sitbon. 2014. 
Designing with people with disabilities: Adapting best practices of DIY and 
organizational approaches. In Proceedings of the 26th Australian Computer-Human 
Interaction Conference on Designing Futures: the Future of Design. 519–522. 

[57] Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. 2023. Real-Time 
Flying Object Detection with YOLOv8. arXiv:2305.09972 [cs.CV] 

[58] GPT-4 Technical Report. 2023. OpenAI. https://openai.com/research/gpt-4 
[59] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers 

of end users and end user programmers. In 2005 IEEE Symposium on Visual 
Languages and Human-Centric Computing (VL/HCC’05). IEEE, 207–214. 

[60] Ben Shneiderman and Pattie Maes. 1997. Direct manipulation vs. interface agents. 
Interactions 4, 6 (nov 1997), 42–61. https://doi.org/10.1145/267505.267514 

[61] David Sloan, Matthew Tylee Atkinson, Colin Machin, and Yunqiu Li. 2010. The 
potential of adaptive interfaces as an accessibility aid for older web users. In 
Proceedings of the 2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A). 1–10. 

[62] Abigale Stangl, Nitin Verma, Kenneth R Fleischmann, Meredith Ringel Morris, 
and Danna Gurari. 2021. Going beyond one-size-fits-all image descriptions to 
satisfy the information wants of people who are blind or have low vision. In 
Proceedings of the 23rd International ACM SIGACCESS Conference on Computers 
and Accessibility. 1–15. 

[63] Theresa Jean Tanenbaum, Amanda M Williams, Audrey Desjardins, and Karen 
Tanenbaum. 2013. Democratizing technology: pleasure, utility and expressiveness 
in DIY and maker practice. In Proceedings of the SIGCHI conference on human 
factors in computing systems. 2603–2612. 

[64] Lida Theodorou, Daniela Massiceti, Luisa Zintgraf, Simone Stumpf, Cecily Morri-
son, Edward Cutrell, Matthew Tobias Harris, and Katja Hofmann. 2021. Disability-
first dataset creation: Lessons from constructing a dataset for teachable object 
recognition with blind and low vision data collectors. In Proceedings of the 23rd 
International ACM SIGACCESS Conference on Computers and Accessibility. 1–12. 

[65] Ultralytics. 2024. YOLO-World: Real-Time Open Vocabulary Object Detection. 
https://docs.ultralytics.com/models/yolo-world/ 

[66] Ultralytics. 2024. YOLOv8. https://docs.ultralytics.com/models/yolov8/ 
[67] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation 

vs. experience: Evaluating the usability of code generation tools powered by 
large language models. In Chi conference on human factors in computing systems 
extended abstracts. 1–7. 

[68] David Weintrop. 2019. Block-based programming in computer science education. 
Commun. ACM 62, 8 (2019), 22–25. 

[69] Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon 
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM 
Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1–27. 

[70] Jeffrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards 
end-user programming for the web. In Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1435–1444. 

[71] Momona Yamagami, Alexandra A Portnova-Fahreeva, Junhan Kong, Jacob O 
Wobbrock, and Jennifer Mankoff. 2023. How Do People with Limited Movement 
Personalize Upper-Body Gestures? Considerations for the Design of Personalized 
and Accessible Gesture Interfaces. In Proceedings of the 25th International ACM 
SIGACCESS Conference on Computers and Accessibility. 1–15. 

[72] Yuhang Zhao, Sarit Szpiro, Jonathan Knighten, and Shiri Azenkot. 2016. CueSee: 
exploring visual cues for people with low vision to facilitate a visual search task. 
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and 
Ubiquitous Computing. 73–84. 

https://scratch.mit.edu/
https://arxiv.org/abs/2305.09972
https://openai.com/research/gpt-4
https://doi.org/10.1145/267505.267514
https://docs.ultralytics.com/models/yolo-world/
https://docs.ultralytics.com/models/yolov8/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Seeking in Assistive Technology
	2.2 Methods for Personalizing Assistive Technology
	2.3 DIY Assistive Technology
	2.4 End-User Programming

	3 ProgramAlly
	3.1 Design Goals
	3.2 Visual Filtering Programs in ProgramAlly
	3.3 Block-Based Programming Mode
	3.4 Natural Language: Question Mode
	3.5 Programming-By-Example: Explore Mode

	4 User Study Protocol
	4.1 Participants
	4.2 Procedure
	4.3 Data Collection and Analysis

	5 User Study Results
	5.1 Using Filters in ProgramAlly
	5.2 Programming Process and Challenges
	5.3 Creating Programs with Blocks
	5.4 Generating Programs from Questions
	5.5 Generating Programs from Examples
	5.6 Comparing Creation Modes
	5.7 Benefits and Drawbacks of DIY-ing Assistive Technology

	6 Discussion and Future Work
	6.1 Raising the Ceiling of Creation Possibilities
	6.2 Automating Running Programs
	6.3 Programming in the Age of VLMs

	7 Conclusion
	Acknowledgments
	References



